PREDA: A Programming Model to Scale out Smart Contracts

PREDA Dev Team
https://preda-lang.org/

Abstract

Transactions of a single smart contract can only be pro-
cessed within a single sequential execution engine (e.g. EVM)
in widely adopted blockchains like Ethereum as well as in the
state-of-the-art multi-chain systems like Polkadot and NEAR.
Since few smart contracts contribute majority of transactions,
a solution to scale out a single smart contract is crucial.

In this paper, we propose PREDA, a novel programming
model to scale out any single smart contract by partitioning the
contract state and dividing the transaction traffic, which are
jointed handled by multiple independent execution engines
that can be distributed and parallelized. Since the execution
flow of a transaction may depend on contract states distributed
on different engines, the key design of our approach is to
decouple the transaction logic and the contract state in a
scalable and efficient way by moving execution flow around
instead of moving data between engines.

We implemented PREDA model by extending the exist-
ing Solidity language, which demonstrates that popular smart
contracts with different level of complexity can be rewritten
to gain scalability without taking care of the details of the
underlying distributed system. In our experiments, PREDA
model achieves significant performance and scalability advan-
tages, and also exhibits promising expressiveness for general
smart contracts.

1 Introduction

Since the emerging of Bitcoin [35], improving the throughput
and scalability of blockchain has been a hot topic in both
academia and industry. Among the existing works that ad-
dress blockchain performance bottlenecks, sharding is an
efficient method that divides the entire blockchain network
into multiple shards and processes different transactions in
the shards individually and simultaneously. Many sharding
blockchains [9,28,32,51-53,55,58,59] are proposed in recent
years, in which the throughput of payment transaction execu-
tion can be increased to hundreds of thousands of transactions
per second (TPS), from 7 TPS of Bitcoin.

On the other hand, Ethereum [15] introduced a general
but serial programming model, i.e., smart contract, expanding
the scope of applications on the blockchain from simple pay-
ment to any custom programs. Nowadays, most blockchains
support smart contracts. Some blockchains define their own
smart contract programming languages, e.g., Solidity from
Ethereum [49], Move from Facebook Diem [14], and Cadence
from Flow [19]; some [9, 11] extend a general-purpose pro-
gramming language like Rust and JavaScript; and also [43]
provides an intermediate-level language that can be used in
high-level languages like Solidity. In general, a smart contract
is a collection of states as contract variables and program
behavior as contract functions. After a smart contract is com-
piled and deployed on the blockchain, all participating nodes
in the network have the compiled code replicated. When a
transaction, an external input indicating a specific call to a con-
tract function with arguments, is submitted to the blockchain,
it is executed and validated by all nodes individually. With
a large number of transactions, all nodes must process these
workloads identically and in a consistent order. The contract
states updated on these nodes are exactly the same as well.
The blockchain system is thus essentially equivalent to a sin-
gle state machine.

Performance of single-chain blockchain systems like
Ethereum is extremely restricted as all transactions of all
smart contracts are processed by a single instance of the ex-
ecution engine, e.g. Ethereum Virtual Machine (EVM). Lat-
erally, blockchain is scaled out by multi-chain blockchain
systems [52, 56], which run one independent execution en-
gine on each chain and process all transactions of a smart
contract in one designated instance of the execution engine.
Multi-chain systems work well when there are many smart
contracts but each has a few transactions. However, from the
perspective of a single smart contract, it gains no scalabil-
ity in these multi-chain systems since only one instance of
the execution engine can be leveraged. We observed trans-
action traffic of different smart contracts varies greatly, and
on Ethereum, top-10 smart contracts by number of transac-
tions contributed 26.98% of the total transaction volume in
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Q1 2022 [10]. These top smart contracts should be scaled out,
but are not yet supported by existing methods.

1.1 Smart Contract Scalability

Smart contract scalability is defined as the continuous im-
provement of transaction throughput and state capacity for
a single smart contract when increasing the number of inde-
pendent execution engines. To achieve this goal, we propose
the PREDA programming model, which describes a smart
contract in a way that can be distributed, parallelized, and
scaled out by the underlying system using multiple execution
engines.

With the PREDA model, transactions of a contract are di-
vided and distributed for processing in different instances
of execution engines without duplication. The states of the
contract are partitioned and distributed without overlapping.
In the ideal case, In the ideal case, this approach allows for
a linear scaling of overall transaction throughput and state
capacity as the number of execution engines increases.

The key challenge in PREDA model is efficiently handling
the dependency of the execution logic (code) and the con-
tract state (data) while allowing execution engines to work
independently and avoiding synchronization. The complete
execution logic of a transaction may access multiple parts of
the contract states, which may reside in different execution
engine after state partitioning.

1.2 Distributed by Relay-Execution

When the execution of a smart contract function reaches a
point that requires access to contract state residing on an-
other execution engine, the execution flow is stalled until
the required data is available. It is straightforward to move
the required data from another execution engine so that the
execution can be continued [31, 38], however it may intro-
duce significant overhead of data transfer and complicated
distributed locking for safe data modification. Furthermore,
as for blockchain system, moving data from untrusted remote
peers requires security proof to prevent data inconsistency
and tampering, which is costly and inefficient as the required
data is mutable and can vary in granularity.
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Figure 1: Relay-Execution to facilitate the distributed execution
of a transaction when depended contract data resided in different
execution engines.

We propose to move the execution flow of a transaction
around while keeping partitioned contract data residing in
their designated instance of execution engine at all times.
Figure 1 illustrates the execution of a transaction function
that requiring contract data resided in two different parts of
the contract state. In the single execution engine system like
EVM, as shown in Figure 1(a), the execution can be com-
pleted in one go but cannot be scaled. In a system with multi-
ple independent execution engines, as shown in Figure 1(b),
the execution of a smart contract function continue as long
as the required data is available in the first execution engine
(x). When an external data dependency is encountered (data
is unavailable), a relay message will be emitted to initiate the
subsequent execution in the second execution engine (y) at a
later time.

This Relay-Execution approach requires no moving or lock-
ing of contract states. Every partition of contract states is
updated exclusively by its designated execution engines. The
relay message carries the location of the interrupted point
of the transaction function and a serialized package of lo-
cal context, such as temporary variables, which is typically
much smaller and more flexible for optimization. Verifying
the integrity a relay against tempering is a typical built-in ca-
pability in most sharding blockchain and parachain systems.
The Relay-Execution approach assumes that the code for all
smart contracts is deployed in all execution engines, and a
smart contract function can be executed in any instance of
the execution engine at any time while working with different
partition of contract state though. Since smart contract code
is a small and constant dataset, fully replicating the code in
all engines is a straightforward task.

1.3 Contribution

In this paper, we propose Parallel Relay-Execution
Distributed Architecture (PREDA), a novel programming
model for scaling out smart contracts on sharding blockchains,
parachain systems and layer-2 blockchains. PREDA model
introduces
* Programmable Contract Scopes to define the partition-
ing of contract state based on the data access pattern of
the application, which narrows the range of data access
and minimize the data dependency.

* Asynchronous Functional Relay to describe the trans-
action logic with implicit data dependency exposed so
that the execution can be easily moved across multiple
execution engines.

The proposed programming model leverages existing con-
sensus algorithm and transaction replication mechanism. No
elements are introduced that compromise the security and
decentralization of the blockchain system.

We have implemented the PREDA model as an extended

Solidity language, incorporating additional syntax for pro-
grammable contract scopes and statements for asynchronous



functional relay. We have developed a multi-thread parallel
transaction processor on a single machine and a simplified
sharding blockchain system distributed over the Internet, for
the evaluation of the PREDA model.

We utilize the extended Solidity language to rewrite four
smart contracts originally developed on Ethereum: Payment,
Voting, AirDrop, CryptoKitties, and Million-Pixel. Subse-
quently, we conduct a series of experiments to compare them
with their original counterparts on Ethereum. We primarily
assess the performance of smart contract executions on a
single machine, excluding the overhead associated with run-
ning the consensus protocol and network propagation. In a
global testbed comprising 128 cloud virtual machines, we
compare end-to-end performance. The results demonstrate
that our work achieve promising scalability with an 256 shard
configuration.

2 Background

In this section, we provide the necessary background of this
work, including the details of execution engines on blockchain
systems and smart contract executions on Ethereum.

2.1 Multi-chain Systems

Multi-chain blockchain systems maintain multiple instances
of chain of blocks in the network. Each instance has its
own execution engine and an independent process of chain-
forming and transaction replication. Multi-chain blockchain
systems can be categorized based on various metrics. Figure
2 shows two typical structures of a multi-chain system: the
sharding blockchain, and the parachain system, based on the
implementation methods of cross-chain invocation. When
there is a cross-chain invocation, parachain systems [13, 56],
as shown in Figure 2(b), use a dedicated relay chain to for-
ward the relay from one parachain to another parachain; while
sharding systems, as shown in Figure 2(a), allow any par-
ticipating node in a shard [52, 53, 55, 58] or the end-user
initiating the original transaction [9, 28] to send the relay
directly through the underlying P2P network. Additionally,
multi-chain blockchain systems can be further divided based
on how smart contracts are deployed and executed on shards
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Figure 2: Multi-chains systems have multiple blockchains working
cooperatively in parallel, on each an instance of execution engine is
running.
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or parachains. Some systems [9, 13,28, 55] allow a smart con-
tract to be deployed and executed on all shards or parachains,
while others [52,56,58] confine a smart contract to a specific
shard or parachain. In the former scenario, cross-chain invo-
cations can occur within or across contracts; whereas in the
latter, cross-chain invocations are limited to across contracts
only. One of the primary objectives of the PREDA model
is to establish a general-purpose and scalable framework for
multi-chain blockchain systems, irrespective of low-level im-
plementation details such as relay mechanisms, deployment
strategies and execution methods.

Consensus algorithms for multi-chain systems share a com-
mon capability in addition to those for single-chain systems
like Ethereum. For example, to make a cross-contract invo-
cation between two contracts deployed in different chains,
a relay transaction will be composed in the caller’s chain,
then be forwarded and inserted into the callee’s chain. A
multi-chain consensus algorithm provides an efficient way to
verify the authenticity of an inbound relay transaction without
accessing information from the caller’s chain, which are illus-
trated by red arrowed lines in figure 2. The proposed PREDA
model reuses this capability to make asynchronous functional
relay, which securely moves the execution flow a transaction
to a target execution engine where the required contract state
resides.

Disregarding the consensus details, an execution engine
on a blockchain system can be abstracted as a sequential
state machine as illustrated in figure 3. With a sequential
manner, it takes transactions from an ordered queue, executes
contract function as each transaction indicates and updates
the involved parts of contract state accordingly. The ordered
transactions are organized batch-wise as blocks which are
composed by the block creator in consensus layer. Any exter-
nal input is received as a transaction, unordered, which can be
user-signed normal transactions or verified relay transactions
from other execution engines. These external transactions are
transferred over a broadcast network and cached until being
inserted into the ordered queue for execution, a.k.a. memory
pool. When executing a transaction on a multi-chain system,
outgoing relay transactions might be emitted and then passed
from the initiating chain to a destination chain, where relay
transactions are pooled, confirmed and finally executed.



2.2 Smart Contracts

Smart contracts broaden the application of blockchain, sup-
porting from pure payment applications to arbitrary cus-
tomized applications. Figure 4(a) shows an example of a
simplified ERC20 contract written in Solidity. The code
snippet contains a contract state, i.e., balances represent-
ing the balances of the corresponding addresses, and a con-
tract function transfer, which is to transfer a number of
amount tokens from the transaction sender msg.sender to
a payee. In Ethereum, once a contract is successfully de-
ployed, each node has the compiled contract and stores the
bytecode for future execution in its local Ethereum Virtual
Machine (EVM) [50]. The states and blocks are stored in a
key-value store, e.g. Level DB. When a user submits a trans-
action to invoke the function transfer with corresponding
parameters payee and amount, miners first validate the trans-
action, e.g., if it has a valid signature, and then execute the
function in the EVMs. In this case, the opcodes, e.g., SLOAD,
SUB, ADD, and SSTORE, are used. The state of the sender, i.e.,
balances[msg.sender], is updated by withdrawing a num-
ber of amount tokens with the opcode SUB, and the state of
the receiver, i.e., balances[payee], is updated by deposit-
ing a number of amount tokens with the opcode ADD. Smart
contracts in Ethereum are executed instruction by instruc-
tion and transaction by transaction. After the execution, a
miner selected by the consensus protocol inserts the executed
transactions into a block and sends it to the network. After
receiving a block, a full node executes its transactions and
updates its local states accordingly.

Existing studies, e.g., [12, 16,20,24,41,42], allow multi-
threaded execution of smart contract transactions. However,
these methods are not scalable since each node needs to ex-
ecute all transactions and store all states. On multi-chain
blockchain systems, payment transactions can be executed
by multiple shards or parachains in parallel. However, for
smart contract transactions that invoke arbitrary user-defined
functions, existing systems either use a dedicated chain to
execute smart contract transactions [51,53] or do not support
smart contract transactions so far [28,55,59].

3 PREDA Programming Model

In Solidity on Ethereum, a smart contract is defined as a set of
variables (contract state) and functions (transaction functions)
that update variables. As illustrated in figure 4(a), both state
variables and functions are defined in the global scope of
the smart contract. However, this global scope presents two
significant challenges that hinder the effective and efficient
scaling of smart contracts.

First and formost, efficiently partitioning the contract states
requires an understanding of the data access patterns associ-
ated with state variables. While static code analysis can help
identify the boundaries of the contract state with precision, an

optimal design necessitates a deeper understanding of the ap-
plication’s nature being developed, enabling the partitioning
of state variables based on how they are utilized. We introduce
Programmable Contract Scope (k-scope), a solution that
enhances expressiveness in describing contract state partition-
ing and provides the flexibility needed to enhance scalability
and optimization.

Secondly, a function defined in the global scope necessi-
tates the availability of the entire contract state for execution,
as its data dependencies can span across arbitrary portions
of the contract state. This requirement is impractical in the
context of building a scalable system. To address this chal-
lenge, we propose a solution wherein the scope within which
a function operates is narrowed down, ensuring that its data
dependencies are predetermined irrespective of the actual
values of invocation arguments. Asynchronous Functional
Relay (A-relay) is introduced to decompose the execution of
a transaction to multiple invocations of these scope-narrowed
functions in the order of data dependency, asynchronously
across multiple independent execution engines.

3.1 Semantics

A programmable contract scope ¢ is defined as a collection of
variables {5} and functions { ¥ } that are restricted to access
only variables within the same scope. In a smart contract,
there can be a great number of programmable contract scopes.
These are indexed by a key k with a built-in type like string
or integer. A set of keyed K-scopes P can be formulated as

O = (S5F), keX ey

, in which X denotes the set of all possible values of k.

A function fy, € F of a k-scope ¢; has immediate access
to all variables § and functions ¥ only within that k-scope be-
sides its invocation arguments and the execution context (e.g.
block height, message sender and etc). Unlike functions in
Solidity, a function in the PREDA model is invoked by provid-
ing the current K-scope (target K-scope) to start, an analogy
to this pointer in C++. To continue the execution flow dealing
with state in another K-scope ¢/, an asynchronous invocation
of a function g, will be initiated, which is formulated as a
A-relay :

(On, 8o, > R) )

, in which ¢y is the target K-scope and R is the vector of the
invocation arguments that provided by the caller fq, .

Figure 4(b) shows the PREDA version of the simplified
ERC20 contract that can be scaled out. In part (1), a set of
K-scopes keyed by address type is defined to represent users’
balance, which is equivalent to the map definition in Solidity
in the same line of Figure 4(a) but describes a set of fine-
grained separable states for partitioning. All K-scopes in this
example has the same definition of variables but each has a



contract MyToken is IERC20 {
mapping(address => uint256) balances;
function transfer(address payee, uint256 amount)
external returns (bool)
{
require(amount <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender] - amount;

balances[payee] = balances[payee] + amount;

return true;

} (a) Code in Solidity ¥

{

contract MyToken is IERC20 {
uint256 @address balance;
function transfer(address payee, uint256 amount)

@address external returns (bool)

require(amount <= balance);
balance -= amount;

(1) A Programmable Contract
Scope, indexed by address

—

Programmable Contract Scope

—

(2) A function defined in that ]

relay @payee (amount){

¥

balance += amount;
(3) An Asynchronous Functional Relay with a lambda
return true; function describing the subsequent execution logic

(b) Code in the Extended Solidity with PREDA Model

Figure 4: A glace of a smart contract with the proposed PREDA model.

unique instance. Accordingly, the transfer function is defined
in the same set of K-scopes in part (2), which is invoked by
providing k with the payer’s address as the target K-scope.
In part (3), to proceed with the deposit to the payee k" after
a successful withdraw, a A-relay is initiated with ¢y as the
target k-scope, which adds funds to payee’s balance and is
executed by an engine that hosts the state of ¢y.

In a smart contract, there can be multiple k-scopes having
variables and functions defined. Multiple functions and vari-
ables of arbitrary types including containers can be defined
in a k-scope. Multiple A-relays can be initiated in a single
function call, conditionally or unconditionally. A-relay initi-
ation can be recursive which allows a transaction execution
flow being moved multi-hops across different instances of the
execution engine. Examples dealing with more complicated
logic of transactions are discussed in section 6.

Special K-Scopes

Engine Scopes: One instance of k-scope ¢g(;) is built-in for
each instance of execution engine to represent a scope that is
available for immediate read/write by any function executing
in the current execution engine.

Global Scope: A built-in k-scope ¢g that is logically single-
ton in the entire network. Its states are updated consistently
across all execution engines in a multi-chain system, which
provides a scope that is available for immediate read access
by any function in the network.

Besides the special rules of the data availability described
above, both ¢g(;) and ¢q have the same way for defining vari-
ables and functions, the same restriction for cross-scope data
access and the same requirement of initiating A-relays.

3.2 Partitioning

To decouple the smart contract implementation with the un-
derlying multi-chain architecture, the PREDA model strictly
prohibits referring a specific instance of the execution engine
or making assumption of the underlying distributing configu-
ration of multiple execution engines (e.g. total # of engines).
This also frees the developer from dealing with details of the
underlying distributed systems.

In the PREDA model, programmable contract scopes de-
scribed in a smart contract expose fine-grained boundaries
of contract states that can be partitioned, and leave the ac-
tual partitioning strategy to the host of execution engines on
following considerations:

* A partition scheme should evenly partition the entire
value space of k without overlapping, which uniquely
maps a k to an instance of the execution engine in the
network.

Partition mapping should be resolved only based on the
k of a K-scope ¢, and identifies a single instance of the
execution engine without ambiguity.

 Contract states in storage are indexed by k, and are writ-
ten according to the current K-scope .

On initiating a A-relay, the host should convert the relay
whose target k-scope is hosted by the current execution
engine into a local invocation instead of composing and
emitting a relay transaction.

For example on a sharding blockchain with 2" shards, the
partition mapping can simply be the first n-bits of the crc32(k).
Each execution engine owns a unique instance of states in the
engine scope ¢g;) for i-th execution engine, and maintains
a copy of states in the global scope ¢q, which is consistent
across all instances of the execution engines. An engine scope
Op(;) 1s not allowed to be the target of a A-relay nor being
referred by specifying 0(i). Variables and functions only in
the g(;) can be accessed by the i-th execution engine, which
is referred implicitly as part of the current execution context.

3.3 Relaying

A function executing in a K-scope ¢y is required to initiate a
A-relay to proceed execution that deals with state variables
in another k-scope ¢/. Figure 5 illustrates the workflow of
the A-relay in the example shown in Figure 4, a successful
execution of transfer transaction will emit a A-relay, which
will be converted to a relay transaction by the host of the
execution engine. The relay transaction will be passed to
the memory pool as an unordered pending transaction in
the destination execution engine, and later confirmed and
executed there. The actual mechanism of passing a A-relay to
the destination execution engine is not defined in the PREDA



model, but handled by the host of the execution engines and
the underlying multi-chain system. It is required that the host
and the multi-chain system have the following capabilities:

¢ A A-relay can be converted to a relay transaction with
target K-scope, identifier of the function to be invoked,
and arguments if any.

* A block should carry a proof (e.g. Merkle root) of the
complete set of all emitted A-relays so that the integrity
of all outgoing relay transactions can be verified by other
nodes.

* A relay transaction should carry a proof (e.g. a Merkle
path) for verifying that it is emitted by a transaction con-
firmed in a specific block from the initiative execution
engine.

* A relay transaction can be transferred to the memory
pool of the destination execution engine as an unordered
pending transaction, and awaits being confirmed and
executed.

A A-relay to the global scope 0q logically undergoes the
same workflow as normal A-relays. Since a global relay
transaction is broadcast, duplicated and transferred to all
execution engines, the states in the global scope will be
consistent across all execution engines. At any block height,
blocks in different execution engines have an ordered set of
global relay transactions that is consistent across all engines.
The global relay transactions will be executed before any
transaction specific to a particular execution engine in that
block. As discussed in section 3.1, a A-relay to an engine
scope is not allowed.

Cross-Contract Invocations can be carried out im-
mediately without requiring a A-relay in the PREDA model,
as long as the invocation is within the same K-scope. A
cross-contract invocation across different k-scopes is required
to initiate a A-relay targeting the callee’s k-scope. Thus,
taking cross-contract invocations into account, the A-relay
definition in Equation 2 is extended to
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¢’ denotes the smart contract whose function is invoked.
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Figure 5: Workflow of the A-relay for transfer in the MyToken
contract (figure 4).

3.4 Parallelism

Transactions dealing with different k-scopes are executed
inherently in parallel since those are separately processed
by parallel instances of independent execution engines. The
PREDA model ensures that execution of any transaction has
access restricted to contract state within the current engine,
which allows execution engines to be driven by different
threads on a multi-core computer without worrying about the
thread safeness of data access, and to be deployed on different
computers without resource sharing.

The relay-execution approach described in section 3.3 actu-
ally decomposes a complete transaction into multiple Micro-
Transactions, or u-Txns, each reads or writes a limited set of
k-scopes that has guaranteed availability in a single execution
engine. u-Txns scattered in different execution engines are
executed in parallel while ones in the same execution engine
are processed sequentially, which avoids race conditions and
needs of concurrency protection of data access. In the exam-
ple shown in Figure 4, the transaction is decomposed to a
withdraw step and a deposit step. As long as their target
K-scopes are mapped to different execution engines, the two
p-txns are processed in parallel, along with more p-txns of
the transfer transactions. Parallelization at a granularity of
p-txn provides much better scalability and load balancing than
those at smart contract level as other multi-chain blockchain
systems did [52,56,58].

4 Crystality: the Extended Solidity

To realize the proposed programming model, we developed
the Crystality language by extending the widely adopted
smart contract language, Solidity, which is originally devel-
oped for Ethereum and EVM. A few syntaxes are introduced
to the existing Solidity language for declaring variables and
functions in k-scopes and making A-relay invocations. A tran-
spiler is developed to convert the Crystality code to conven-
tional Solidity code, by mapping new syntaxes to special raw
invocations for new behaviors and checking scope compati-
bilities for error detection.

4.1 Variables in k-Scopes

In Crystality, a state variable is defined and instantiated in a
K-scope, or for each key of keyed x-scopes as:

var_type (@scope var_name;

where @scope specifies a k-scope which can be the global
scope @global, the engine scope @engine, or when scope
is a name of Solidity elementary typename to specify keyed
K-scopes like @address or Guint. @global can be omitted
which is the default k-scope specifier.

A variable definition with @global or @Gengine will be
converted simply as



var_type var_name;

in Solidity and the scope specifier will be recorded in the
symbol table in the transpiler runtime. Any reference to the
variable will be converted to Solidity as is.

A variable definition with keyed k-scopes will be converted
to a mapping in Solidity:

mapping (scope => var_type) var_name;

with the scope specifier recorded in the symbol table for scope
compatibility check when the variable is referred. A reference
to the variable in a function will be converted to Solidity as a
map access:

var_name [_target]

,in which _target is a built-in const value k representing the
target scope 0.

4.2 Functions in k-Scopes
A function is always declared in a K-scope as

function func_name (arg_type arg, ...)
@scope qualifiers returns (ret_type){ ... }

Similar to variable definition, @scope can be @global,
@engine or a Solidity elementary typename. Again, @global
is the default k-scope specifier, which can be omitted. In
cases of @global or @engine, the declaration will be simply
converted to Solidity by removing @scope as

function func_name (arg_type arg, ...)
qualifiers returns (ret_type){ ... }

with its scope specifier record in the symbol table.
When the @scope is a keyed K-scope, the key & of the target
scope O is inserted as the first argument of the function like

function func_name (scope _target, arg type arg, ...)
qualifiers returns (ret_type){ ... }

The built-in constant _target is introduced as an argument to
allow accessing variables defined in the current keyed k-scope
as described in section 4.1.

Code in a function body has immediate access restricted to
variables and functions in the target K-scope by referring corre-
sponding symbols. While special k-scopes such as @global
and @engine have exceptions of the isolation rules for ac-
cessing variables and functions as mentioned in section 3.1,
symbols of variables and functions defined in the special k-
scopes are merged with ones in the target k-scope without
scope qualifications. To this end, we require symbols defined
in any K-scope have unique names within a smart contract.

In the target x-scope ¢ or in the current engine K-scope
g(;)» variables and constant functions defined in global scope

are merged for read-only access. Symbols defined in the cur-
rent engine K-scope ¢g(;) are merged into the target k-scope
0y and allow full access of both reading and writing.

4.3 Relay to a Target k-Scope

To continue execution logic involving contract states in a
different K-scope other than the target K-scope without desired
immediate access, a A-relay invocation should be made as

relay @key (varl, var2, ...){ ... }
relay @global (varl, var2, ...){ ... }

, which defines a lambda function and emits a A-relay with
it. relay is a new keyword for making a A-relay invocation
and is followed by the target specifier which can only be the
@global, a specific key of keyed k-scopes or an expression
resulting a key.

The relay invocation will be converted to Solidity code
as an EVM message call on a magic contract address that
can be recognized as a A-relay invocation by the EVM host.
So that such a A-relay invocation can be captured and rein-
terpreted as a cross-scope relay transaction if necessary. The
transpiler-converted Solidity code is shown as follows, which
are equivalent to the Crystality code above:

address (_magic_address_kappa) .call(
abi.encodeWithSignature (
"unique_funcname_k (scope,var_typel,var_ type2,...)",
key, varl, var2,
)
)i

address (_magic_address_global) .call(
abi.encodeWithSignature (
"unique_ funcname g(var_typel, var_ type2, ...)",
varl, var2,
)
)i

_magic_address_kappa is a constant built-in address
representing a A-relay on a normal k-scope ¢, and
_magic_address_global is for indicating the global scope
0q. Such an invocation will be captured by the EVM host and
converted to an outgoing relay transaction. When the relay
transaction is received and confirmed, a private function in the
target K-scope will be invoked, which is transpiler-generated
by taking the body of the the lambda function from the A-relay
invocation.

function unique_funcname_k
(scope _target, var_typel varl, var_type2 var2, ...)
@scope private { ... }

function unique_funcname_g
(var_typel varl, var_type2 var2, ...)
@global private { ... }

unique_funcname_* are unique function names within a
smart contract generated by the transpiler.

The transpiler-generated functions converted from a A-relay
is guaranteed to be invoked only from the function where it is



defined. It can be a named function to be invoked in a A-relay
without a function body as

relay @key named_function_k (varl, var2, ...);
relay named_function_g(varl, var2, ...);

In these cases, functions being invoked should be defined as

function named_function_k (arg_type arg, ...)
@scope public { ... }

function named_function_g (arg_type arg, ...)
@global public { ... }

A A-relay to a named function can also be cross-contract
with the function name scoped by the name ExtContr of the
contract like

interface ExtContr {
function named_function_k (arg_type arg, ...)
@scope public;

function named_function_g (arg_type arg, ...)
@global public;
}

relay @key ExtContr (c_addr).named_function_k (var, ...);
relay ExtContr (c_addr).named_function_g(var, ...);

, in which c_addr is the address of the smart contract
ExtContr actual deployed.

4.4 Transpilation for EVM

We employ a two-stage process to compile a Crystality smart
contract to EVM bytecodes. First, a transpiler is developed to
convert Crystality code to conventional Solidity code. We uses
ANTLR [1] to generate the parser code based on the Solidity
syntax definitions with Crystality extensions. The resulting
abstract syntax tree (AST) is walked through to generate the
Solidity code with necessary conversion and auxiliary code
generation described above. Second, the generated Solidity
code is compiled using the widely used SOLC [5] compiler
to generate bytecodes that can be executed on an unmodified
EVM. As an example, the simplified ERC20 smart contract in
figure 4 will be transpiled as

contract MyToken is IERC20 {
mapping (address => uint256) balance;
function transfer
(address _target, address payee, uint256 amount)
external returns (bool)

require (amount <= balance[_target]);
balance[_target] -= amount;
address (_magic_address_kappa) .call (
abi.encodeWithSignature (
" _lambda_transfer 0 (address, uint256)",
payee, amount
)
)i

return true

}

function _lambda_0O_transfer
(address _target, uint256 amount)

{

balance[_target] += amount;
}
}

We use EVMOne [22] as the EVM implementation in our
system to execute bytecode generated by SOLC. EVMC [3]
is the standard to communicate with EVMOne. We imple-
mented its HostContext interface to provide the EVMOne
with capabilities of accessing state storage, handling message
call and exposing metadata of current block and transaction.
In addition to those, all A-relay invocations are captured by
overriding the HostContext: :call function of the EVMC
interface using the magic address _magic_address_kappa
for keyed x-scopes ¢ and _magic_address_global for the
global scope ¢q. The target scope, function and arguments, as
encoded by abi.encodeWithSignature, are passed to the
underlying multi-chain system for composing the relay trans-
action and forwarding to the execution engine that hosts the
target K-scope .

4.5 Writing Scalable Smart Contracts

Crystality enables that a smart contract can be written in a
scalable way based on PREDA programming model. While it
relies on developers to separate the contract states in different
K-scopes using programable contract scope syntax based on
the nature of the business logic, and decompose the transac-
tion workflow using asynchronous functional relay syntax
accordingly. The design goal is to minimizes amount of the
contract states hosted in global scope ¢ and minimizes the
transaction traffic processed in the global scope. Crystality
provides flexibilities for developers to tweak and optimize
smart contracts so that the understanding of the actual patterns
of workload in the runtime can be leveraged.

Note that, any Solidity code can be compiled in the pro-
posed Crystality system as is, which is actual put everything
in the global scope. Such a smart contract will not be scal-
able at all and is equivalent to running a smart contract on a
single-chain blockchain system.

Automatically analyzing a Solidity smart contract, decom-
posing data dependencies and separating contract states based
on static code analysis or profiling with exemplar transaction
traffic is an interesting research topic. We leave this to fu-
ture works, while we provide the target for such automatic
conversion as a starting point.

5 System Design and Implementations

To evaluate the Crystality language with the proposed PREDA
programming model, we developed a smart contract execu-
tion module as described in Section 4.4. Two testbeds are
developed for testing the smart contract execution module:
one for running on a multi-core single machine and the other
for a distributed scenario on open Internet.



The PREDA smart contract execution module uses Solc [5]
0.8.18 and EVMOne [22] 0.8.0 for Solidity compilation and
bytecode execution. Different implementations of EVM host
interfaces are developed for adapting the two testbeds.

5.1 On a Multi-Core Single Node

We evaluate the pure execution performance of our method
on a multi-core single node. We call this testbed as Multi-
threading Transaction Processor, which minimizes overheads
that are unrelated to smart contract execution such as block
composition, data communication, signature verification, and
consensus algorithm.

Using n cores on the test computer, n+ 1 execution units
are allocated. Each has an independent instance of the EVM
engine, a lock-free queue [18] for pending transactions and
a working thread that drives the processing. One of the ex-
ecution unit Ug is dedicated for transaction processing and
state updating in the global scope ¢gq, and the rest n execution
units Ug(;) work for all n partitions of keyed k-scopes.

In each execution unit, transaction processing is performed
batch-wise. Each batch will process transactions as much as
possible until exceeding a predefined total gas limit or the
pending transaction queue being drained. The processing is
an infinite loop which undergoes the following steps:

¢ Finish the batch in Ug for the global scope, while all the
rest of units Ug ;) await.

* Process the batch in all units Ug;) in parallel, while the
unit Ug awaits. Since contract state in global scope are
read-only to all Ug;), there would be no race condition.

¢ All units Ug(;) are finished when the total gas exceeds
the limit.

Note that the total gas is the sum of the gas consumptions
across all Ugy;) units to ensure that utilization of CPUs are bal-
anced and all units finished nearly at the same time. When pro-
cessing in a batch, all relay transactions emitted are collected
and dispatched to the pending queue of the corresponding unit
on the end of the current batch. Pending relay transactions are
processed prior to pending normal transactions.

5.2 On a Sharding Blockchain System

We also evaluate the end-to-end scalability of the proposed
model on a sharding blockchain system deployed on open
Internet. We developed a simplified homogenous sharding
blockchain system similar to NEAR [52], which creates n
blocks for n shards at each block height synchronously as
shown in figure 10. In addition, a global chain is introduced to
process transactions and update states in global scope ¢q only.
Global chain provides a globally synchronized consistent view
of global scope at every block height. Designing a sharding
blockchain is out of the scope of this paper, we leave details
in appendix A.

6 Evaluation

6.1 Crystality Smart Contracts

Besides the ERC20 contract, as shown in Figure 4, we rewrite
four other widely used smart contracts in Crystality and use
them to evaluate the performance of the PREDA model. They
are Voting, AirDrop, CryptoKitties, and MillionPixel.
The corresponding code can be found in Appendix B. In the
following experiments, we use the same software setups to
run these smart contracts. For MyToken, we use the Etherscan
API [4] to obtain historical WETH [8] Token transactions in
Ethereum, from block height 4,719,568 (i.e., the creation time
of WETH) to block height 18,184,075 (i.e., at 08:00 am, EST,
September 21, 2023). The dataset includes more than 197.2
million transactions from 877,664 addresses. We re-execute
the first 1,000,000 transfer transactions in our experiments.
For the other smart contracts, we randomly generate 1,000,000
Ethereum addresses.All these addresses are used in Voting
and MillionPixel contracts and 10% of them are used in
AirDrop and CryptoKitties contracts to issue transactions,
with one transaction issued per address. Details on the num-
bers of different types of transactions will be discussed later.

6.2 On Multiple Single Nodes

We first evaluate the Crystality smart contracts on two differ-
ent multi-core nodes, respectively. The first node is a powerful
server that has an AMD EPYC 7742 (64-core, 3.4GHz) CPU
and 2TB memory, running on Linux Ubuntu 20.04. The sec-
ond platform is a desktop machine that has an Intel i17-10700
(8-core w/hyper-threading, 2.9GHz) CPU and 32GB memory,
running on Linux Ubuntu 23.10. The number of transactions
is kept the same when the number of shards increases. Each
thread has its affinity set to a dedicated CPU core.

Figure 6 shows the performance numbers in Transactions
per Second (TPS) on the AMD/Linux machine for all five
Crystality smart contracts. Overall, we can achieve 30.3x to
56.1x TPS improvement when using 64 shards over 1 shard.
Performance numbers of the equivalent Solidity smart con-
tracts are also included. Since EVM can only sequentially
execute Solidity transactions and different EVMs execute the
exactly same transactions in Ethereum, the overall TPS of
running Solidity smart contracts will not improve even with
increasing number of EVMs. As a result, we only draw the
TPS of running Solidity smart contracts in 1 shard with "Eth-"
as the prefix. Compared to Solidity, Crystality contracts can
achieve 17x to 42.9x TPS when run on 64 shards.

We collect the numbers of different types of Crystality Txns
when using 16 shards to run the contracts and include them in
Table 1. The "origin_txns" row represents the amount of trans-
actions initiated from end-users. The "total_relays" row rep-
resents the amount of total relay transactions, which includes
the intra-shard relays denoted as "intra_relays" and the cross-
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Table 1: Numbers of different types of Crystality Txns in 16 shards

MyToken Voting  AirDrop CryptoKitties Million-Pixel
origin_txns 1,000,000 1,000,001 100,000 100,001 1,000,000
total_relays 1,000,000 33 500,000 400,033 1,000,000
intra_relays 64,839 0 32,720 18,698 62,687
cross_relays 935,161 33 467,280 381,335 937,313
global_txns 0 17 0 17 0
shard_txns 2,000,000 1,000,017 600,000 500,017 2,000,000
total_txns 2,000,000 1,000,034 600,000 500,034 2,000,000

shard relays denoted as "cross_relay". The row "global_txns"
and "shard_txns" represent the amount of transactions exe-
cuted in execution unit Ug and other Ug;)s respectively. The
"total_txns" row means the total amount of transactions in-
cluding both.

As best practice, programmers should (1) eliminate the
global transactions as much as possible, because these trans-
actions require global synchronization; and (2) try executing
transactions in engine scope without emitting too many re-
lays, because a relay leads to the switch of execution flow
from one engine to another engine. As shown in the table, all
five Crystality smart contracts issues very few or zero global
transactions. For example, Vot ing contract executes 1 global
transaction in its finalize () function to stop the voting, 16
cross-shard relays are emitted from the global to shards to

100 100

MyToken Voting  AirDrop Kty Million-Pixel MyToken Voting ~ AifDrop ~ Kitty Million-Pixel

(@ "analyze()" running time )" running time

100000 100000

10000

Bytecode Siz

1000 1000

Figure 7: Execution time breakdown in EVMOne "analyze()" and
"execute()" functions, and bytecode sizes in smart contract analyzed
by "analyze()" and executed by "execute()".
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request partial voting results, and 16 global transactions, each
of which accumulates a partial voting result from a shard
when using 16 shards. As a result, Crystality Vot ing contract
scales the best with the number of shards, which is 56.1x TPS
improvement with 64 shards.

When run on one single shard, the TPS of a Crystality
contract is typically lower than its Solidity equivalent. In order
to interpret the performance numbers, we look into the details
of our transpiler-generated Solidity code shown in Listing 4.4.
The major difference compared to the Solidity equivalent (as
shown in Figure 4(b)) is that our transpiler-generated code
implements the relay semantic with the address.call ()
method, which generates a relay transaction in the EVM host,
forwards it to the execution engine hosting the target K-scope
, and reenters the EVMOne virtual machine to execute the
relay function. There are two major steps when executing a
function in EVMOne. The first step analyze (), functioning
as a code reviewer and a bytecode parser, traverses the smart
contract bytecodes, verifies the correctness, and restores a
function pointer according to the bytecode function table.
The second step execute (), regarded as a function seeker
and an instruction executor, takes the analyzed code from
analyze () and execution state as parameters, jumps to the
corresponding function and execute the instructions.

Figure 7 quantifies the execution time of these two steps
in our transpiler-generated Solidity codes (denoted as "ours")
and their Solidity equivalents (denoted as "Solidity"), and the
bytecode sizes executed in the execute () step for both meth-
ods. As shown in Figure 7(a) and (b), both the execution time
of analyze () and execute () are increased in our transpiler-
generated code. The first reason behind this is that our smart
contracts have larger bytecode sizes as shown in Figure 7(c),
leading to longer time of code analyzing in analyze (). The
second reason is that our relay implementation executes more
instructions in execute, as shown in Figure 7(d). Therefore, a
more efficient way to implement the A-relay semantics should
be an extension of EVM opcodes to support the functional
relay, which is left to future works.

We also carry out the performance comparison on the In-
tel/Linux machine. As shown in Figure 8, we can achieve 5.6x
to 7.45x TPS improvements when using 8 shards over 1 shard.
When comparing to the results of Solidity smart contracts,
we can achieve 2x to 4.5x TPS improvements when running
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Crystality smart contracts on 8 shards. The experiments il-
lustrate that our PREDA model is scalable in the testbeds of
Multi-threading Transaction Processor.

6.3 On a Sharding Blockchain on Internet

To evaluate the scalability of PREDA language on distributed
sharding blockchain network in real world Internet environ-
ment, we implement the sharding blockchain system, as de-
scribed in Section A. The network is deployed up to 256
nodes on 128 virtual machines in different geo-locations over
the world. Each virtual machine has 4 cores, 16GB memory
and 50Mbps bandwidth to the public internet. Each node joins
one shard. The entire network is configured to ensure that
each shard has at least one participating node. In each shard, a
block is created every 10 seconds in average, and each block
carries transactions with restricted total consumption of com-
puting capacity. In our experiments, computing capacity is
measured by gas burnt as defined by EVM.

In our experiments, the computing capacity restriction,
a.k.a. gas limit, of each block is 1024. For transactions in-
volved in our experiments, the gas consumption of each trans-
action and relay transaction are following:

e In MyToken (Figure 4(a)): withdraw: 1, deposit: 1.
* In Veoting (Listing 1): vote function: 1.
* In AirDrop (Listing 2): airDrop: 1, deposit: 1.

* In CryptoKitties (Listing 3): breed: 1, lambdai#1 func-
tion: 1, lambda#?2 function: 500, lambda#3 function: 1.

e In MillionPixel (Listing 4): claim: 1, lambda#1: 1.

Note that, we set the gas consumption in the Lambda#2 of
Crystality CryptoKitties "contract” very high because it uses
the genes from the matron and sire to compute the genes of
the new born, involving multiple times of square root on big
numbers.

Since the blockchain network operates with a fixed com-
puting capacity, we measure the number of total block height
elapsed to complete the execution of all pre-defined test trans-
actions and all subsequentially emitted relay transactions.
Figure 9 shows that smart contract developed using Crys-
tality language scales linearly with increasing numbers of
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shards. Unlike simulation with multi-threading on a single
node, nodes in a blockchain network share no computing re-
source, which avoids scalability degradation even when all
nodes are fully leveraged. In average, 256 shards can yield
up to 124.2x throughput improvement. Note that, based on
the workload of each testing contract, we generate differ-
ent numbers of testing transactions to trigger the execution
of contracts. For contracts listed above, the numbers of test
transactions are 10m, 10m, 400k, 100k, and 10m respectively,
so that the experiment can be done within reasonable hours.

7 Related Work

Many studies have optimized the performance of blockchains,
e.g., those that optimize transaction dissemination and block
propagation [17,21,23,26,36,37,39], those that accelerate
consensus protocols [25,29, 30,34,46,47,57], Layer 2 net-
works [40, 44,45], etc. In this paper, we focus on sharding
blockchains and parallel execution of smart contracts.
Elastico [32] is a sharding blockchain. In Elastico, a node
can join a committee of a shard by solving a PoW puzzle. The
committee of each shard performs PBFT to reach consensus
on a set of transactions. A final committee is responsible for
collecting the results of all shards, creating the final block,
and sending it to the network. Elastico is designed for parallel
execution of payment transactions. OmniLedger [28] is a se-
cure, scalable, and decentralized sharding system. To ensure
security, OmniLedger uses RandHound [48] as a public ran-
domness protocol to select and assign validators to shards and
to periodically rotate the assignment between validators and
shards. It introduces Atomix, a two-phase client-driven “lock-
/unlock” protocol to ensure that a client either fully commits
a transaction across shards or aborts the transaction. Om-
niLedger is also designed for parallel execution of payment
transactions. Its pessimistic locking mechanism can lead to
sequential execution of smart contract transactions when a
state is shared by multiple transactions. Since neither Elastico
nor Omniledger are designed for parallel execution of smart
contracts, the open-source sharding blockchain Zilliga [53],
which is “built upon the ideas of ByzCoin, Elastico, and Om-
niledger”, uses a dedicated shard (i.e., a directory service
committee) to process all smart contract transactions.
RapidChain [59] is a BFT-based sharding protocol that
is resilient to Byzantine failures of up to a 1/4 to 1/3 frac-
tion of the network. It does not require a trusted setup for
nodes to join the network and can improve performance with
a new intra-committee consensus protocol by implementing
block pipelining and optimizing the gossip algorithm for large
block propagation. Monoxide [55] is a PoW-based sharding
blockchain that implements optimistic cross-shard transaction
processing. It provides a new mining method that allows a
miner to create multiple blocks for different shards with a
PoW nonce, to prevent the 1% attack. OHIE [58] is a parallel
chain where multiple chains execute Nakamoto consensus



instances individually. To secure each chain, miners in OHIE
use a Merkle tree that binds to the last blocks of all parallel
chains in a newly created block. A decentralized method is
also implemented to determine the total order of blocks cre-
ated by parallel chains. Prism [13] improves blockchain scal-
ability by decomposing the blockchain into multiple chains
based on functionalities. It groups blockchain nodes into dif-
ferent chains for block proposal, voting, final block creation,
etc. In [54], Prism is extended to support smart contract exe-
cution, providing the virtual machine execution module and
decoupling transaction validation and state update. Miners
in Prism only need to verify transactions, but not execute
transactions or update states in the virtual machine. How-
ever, without sharding on-chain states, transactions accessing
the states of the same contract will still execute sequentially
in Prism. Chainspace [9] and COSPLIT [38] are two inde-
pendent sharding blockchains that attempt to enable paral-
lel execution of smart contract transactions. In Chainspace,
the optimistic transaction execution method can lead to high
abort-and-rollback overhead when there are large conflicts,
which is very common between transactions invoking the
same contract. In COSPLIT, on-chain states are not sharded.
In addition, COSPLIT relies on the compiler to detect paral-
lel opportunities, and many parallel opportunities are missed,
such as a single transaction calling a function with a parallel
loop (e.g., the airDrop function).

There are several studies that address parallel execution of
smart contracts, but only with local parallelism, i.e., without
global workload partitioning and parallel processing between
nodes. Based on the transactional boosting approach [27],
Dickerson et al. [20] instrument the data structures of smart
contracts and detect synchronization conflicts. They allow
miners to execute conflict-free transactions and update states
in parallel. The execution plan information is inserted into
the block by the miner. Full nodes can deterministically re-
execute the received blocks. Anjana et al. [12] also use the
optimistic Software Transactional Memory (STM) method
to execute smart contract transactions on miners and verify
blocks on full nodes, both in parallel. Based on historical
data of Ethereum, Saraph and Herlihy [41] estimate the po-
tential benefit of speculative execution and use the specula-
tive method to execute smart contract transactions in paral-
lel. Chen et al. [16] propose Forerunner, a constraint-based
approach for speculative execution of smart contract trans-
actions, in a pre-execution manner. All of these approaches
focus on parallelizing smart contract execution on a single
node. Without sharding, all nodes must continue to execute
all transactions and store all on-chain states.

8 Conclusions

In this paper a novel programming model, PREDA, is pro-
posed to scale out transaction processing and state hosting of
smart contracts. By partitioning contract states and dividing
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transaction traffic, the workload of a single smart contract can
be distributed to an array of execution engines working in
parallel. Programmable Contract Scope are introduced to
define the fine-grain partition boundary of contract states so
that states of a smart contract can be partitioned by the un-
derlying system with flexibility. Accordingly, Asynchronous
Functional Relay is proposed to solving the code-data de-
pendency by moving execution of the transaction workflow
across execution engine to where involved contract states
reside.

The proposed PREDA model is realized as a smart contract
language, Crystality , by extending widely adopted Solidity
language with new syntaxes for defining states/function in pro-
grammable contract scopes and initiating invocations of asyn-
chronous functional relay. We demonstrate the generality and
flexibility of Crystality by rewriting existing Solidity smart
contract in a scalable way. In our experiments, the Crystality
version of testing smart contracts are well parallelized and
achieve promising linear scalability , which delivers 124.2x
throughput improvement with 256 shards.
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Appendix

A Sharding Blockchain with Global Scope

A.1 Multi-Chain Structure

First, we use a typical single-chain structure including con-
tract state storage, execution engine, mempool and the broad-
cast network, to process transactions and maintain states in
global scope only, as the global chain Sq. Then, the system is
extended by allocating additional 2 shard chains Se(;) with
same structure as the global chain but handles transactions
hosted by their own partition 8(i) only. Parameter k is the
sharding order controls the overall size of the sharding sys-
tem, exponentially, which makes total number of shards to be
a power of two.

In the system, block creations are synchronous. For each
new block generated in global chain, one, and only one, block
per shard chain will be generated, which results in aligned
block heights for all chains in the system. In any node par-
ticipated in one or more shards, the block of global chain at
height & shall be received and executed after any block at
height 7 — 1 is executed, and prior to any block at height &
in any shard chain, which provides a consistent view of the
global scope ¢q at height 4 throughout the entire network
when executing any transaction in shard chains. In each node,
the contract states in global scope is available for thread-safe
read-only access by transactions executing in shard chains.

A.2 Data Structures

A shard chain doesn’t have own consensus proof, instead
it inherits consensus proof from the global chain. Figure
11 illustrate key data structures that extend a single-chain
blockchain system with shard chains. Existing data structures,
block header and block body, of the single-chain system are
denoted here as consensus header and global block. The con-
sensus header carries the proof for a validated consensus proof
(e.g. the POW nonce, or the aggregation of PoS signatures)
and the hash pointing to the global blocks 0, which carries
actual transactions in global scope being confirmed. The two
data will be broadcasted in the global broadcast network that
all nodes in the network will receive those regardless of the

{ J<{ J< J<{ ] Global Chain
< <M< s chain
i i ! i #0
‘y" k[ ] "‘\[ ] "'\l\‘[ ] "&‘\‘[ ] Shard Chain
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Figure 10: A sharding blockchain system with a global chain and
multiple shard chains.
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sharding division. Every node thus has the contract states of
the global scope and keeps updating.

To extending the global chain with shard chains, two addi-
tional aggregated proofs (® and Y) are introduced and embed-
ded in the consensus header at every block height to prove
validities of all newly generated shard blocks and emitted
relay transactions at that height A.

A Merkle tree O is built by taking hashes of 2% shard
blocks at height & of all shard chains. The Merkle tree
root will be embedded in the consensus header so that a
shard block 6, can be verified in any shard chain.

* A Merkle tree Y is built by taking hashes of relay trans-
actions emitted by blocks at height /4 of all shard chains
to facilitate functional relays. Embedding the root of the
Merkle tree Y in every consensus header enables vali-
dation of any inbound relay transactions received in the
global chain or in any shard chains, by checking upon
the Merkle root carried by the consensus header at the
emitted block height of a particular relay transaction.

B Crystality Smart Contracts

Voting is a smart contract that allows voters to vote on the
candidate proposals [7]. In Solidity code, the candidate pro-
posals are defined in a global array and voting transactions
from voters are executed one by one in the EVM to read and
modify the proposals accordingly. The equivalent Crystality
Voting smart contract is shown in Listing 1. We define the
variable proposals in the global scope ¢gq with the keyword
@global and introduce a new variable votes in the engine
scope with the keyword @engine. The basic idea is to use
this engine scope variable as an intermediate layer to obtain
voting results in each engine, and aggregate all partial results
to the final results defined in the global scope.

contract Ballot {
Proposal[] @global proposals;
uint64[] @engine votes;
bool @address voted;

function vote (uint32 proposal)
(bool) {
(proposal < proposals.length) {

votes [proposal]++;

voted = true;

return true;

}

return false;

}

@address public returns

G

function finalize () Qaddress public {
require (controller == msg.sender);
relay @engines {
relay Qglobal (votes) {
for (uint32 i = 0; i < votes.length; 1i++)
proposals[i].weights += uint64 (votes[i]);

Listing 1: The Voting smart contract in Crystality
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Figure 11: In our synchronous sharding, a block contains a consensus header, a global transaction block, and transaction blocks, one for each
shard. Relay transactions are verified with the merkle tree root carried by the consensus header.

When receiving a transaction from an address, the function
vote () defined in the k-scope (i.e., the address scope using
@address in this case) directly updates the engine scope
variable votes. Concurrent voter transactions partitioned
by address scope will be forwarded to different engines and
modify different instances of the variable votes. When
the function finalize () is called to complete the voting
process, the function sends a relay to all engines and triggers
all engines to send a relay to the global with the partial voting
results, i.e. votes. The global scope variable proposals
will be updated and finalized.

AirDrop is a smart contract sending tokens or NFTs
from an address to a group of destination addresses [2]. In
Solidity code, the transfers occur in a for loop, and the global
states of balances are updated sequentially. This could be
the performance bottleneck and exacerbated if computations
in the loop involve heavier operations such as divisions of big
numbers and hash functions. Existing work using multithread
execution [16,41,42] or sharding execution [9, 38] cannot
parallelize such a case because none of them can leverage
parallel opportunities inside a single transaction.

contract AirDrop {
uint Qaddress balance;

function airDrop (Payment []
@address public returns
uint total = 0;

memory recipients)
(bool) {

for (uint i = 0; i < recipients.length;
require (recipients[i].amount >= 0);
total += recipients[i].amount;

}

i++) |

if
balance -=

(total > balance)
total;

return false;

for (uint i = 0; i<recipients.length; i++) {
if(recipients[i].amount > 0) {
relay @recipients[i].to (amount) {
balance += amount;

}
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}

Listing 2: The AirDrop smart contract in Crystality

The equivalent Crystality AirDrop smart contract is
shown in Listing 2. In the for loop of Crystality AirDrop ()
function, a relay is issued for each recipient. Multiple
relays will be executed in different target k-scopes keyed by
recipient address.

CryptoKitties is a blockchain game enabling players to
breed and trade virtual cats through NFTs on Ethereum [33].
Upon its launch time in October 2017, the game accounted
for a substantial 10% of Ethereum’s network traffic, causing
a surge in gas prices that temporarily disrupted Ethereum’s
usability. We implement the Crystality CryptoKitties smart
contract as shown in Listing 3, focusing on the breed ()
function. The execution of this function will trigger a
sequence of chained relays, from the end-user’s k-scope
to the matron kitty’s k-scope, the sire kitty’s K-scope, and
ultimately back to the end-user’s K-scope.

contract KittyBreeding {
KittyInfo[] Qglobal allKitties;
KittyInfo[] @engine newBorns;
mapping<uint32 => Kitty> @address myKitties;
function breed (uint32 m, uint32 s,
@address public
require(m < allKitties.length);
require(s < allKitties.length);
require (allKitties[m].gender);
require(!allKitties[s].gender);

bool gender)

relay @allKitties[m].owner
myKitties[m].lastBreed =

(m, s, gender) {
block.number;
relay @allKitties[s].owner (myKitties[m].genes, m
r S, gender) {
uint new_gs = genesMix (myKitties[m].genes,
myKitties[s].genes);

relay @msg.scope (m, s, gender, new_gs) {
uint birth_time = block.number;
uint id_nb = newBorns.length |
_addNewKitty (msg.scope, new_gs,
KittyInfo memory n;
n.gender = gender;

(1 << 255);
id_nb, m, s);



O 0NN AW —

n.birthTime = birth_time;
n.owner = msSg.Scope;
newBorns .push (n) ;

Listing 3: The CryptoKitties smart contract in Crystality

Similar to the Crystality Voting smart contract, an engine
scope variable newBorns () is defined. Using this variable,
write operations on chain are executed on different engines
independently and simultaneously. Although the smart
contract accesses the global scope variable al1Kitties, this
doesn’t become a global barrier because the contract function

only reads the global scope variable.

MillionPixel is a DeFi smart contract enabling users
to buy pieces of DeFi Meta Chain’s history [6]. We imple-
ment this smart contract in Crystality to show that how to
define and use a K-scope other than the address scope. As
shown in Listing 4, we use the uint32 K-scope as the relay

target, denote as @unit32.

contract MillionPixel {
Land @uint32 land;

function claim(uintlé x, uintlé y)

relay @index (msg.sender) {

if (true == land.flag) return;
land.flag = true;
land.owner = msg.sender;

Listing 4: The MillionPixel smart contract in Crystality

@address public
uint32 index = uint32(x) * 65536 + uint32(y);
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