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PREDA: A Programming Model to Scale out Smart Contracts

PREDA DEV TEAM

Transactions of a single smart contract can only be processed within a single sequential execution engine (e.g. EVM) in widely adopted

blockchains like Ethereum as well as in the state-of-the-art multi-chain systems like Polkadot and NEAR. Since few smart contracts

contribute majority of transactions, a solution to scale out a single smart contract is crucial.

In this paper, we propose PREDA, a novel programming model to scale out any single smart contract by partitioning the contract state

and dividing the transaction traffic, which are jointed handled by multiple independent execution engines that can be distributed and

parallelized. Since the execution flow of a transaction may depend on contract states distributed on different engines, the key design of

our approach is to decouple the transaction logic and the contract state in a scalable and efficient way by moving execution flow around

instead of moving data between engines.

We implemented PREDA model by extending the existing Solidity language, which demonstrates that popular smart contracts with

different level of complexity can be rewritten to gain scalability without taking care of the details of the underlying distributed system. In

our experiments, PREDA model achieves significant performance and scalability advantages, and also exhibits promising expressiveness

for general smart contracts.

1 INTRODUCTION

Since the emerging of Bitcoin [35], improving the throughput and scalability of blockchain has been a hot topic in
both academia and industry. Among the existing works that address blockchain performance bottlenecks, sharding is
an efficient method that divides the entire blockchain network into multiple shards and processes different transactions
in the shards individually and simultaneously. Many sharding blockchains[9, 28, 32, 51–53, 55, 58, 59] are proposed in
recent years, in which the throughput of payment transaction execution can be increased to hundreds of thousands of
transactions per second (TPS), from 7 TPS of Bitcoin.

On the other hand, Ethereum [15] introduced a general but serial programming model, i.e., smart contract, expanding
the scope of applications on the blockchain from simple payment to any custom programs. Nowadays, most blockchains
support smart contracts. Some blockchains define their own smart contract programming languages, e.g., Solidity from
Ethereum [49], Move from Facebook Diem [14], and Cadence from Flow [19]; some [9, 11] extend a general-purpose
programming language like Rust and JavaScript; and also [43] provides an intermediate-level language that can be used in
high-level languages like Solidity. In general, a smart contract is a collection of states as contract variables and program
behavior as contract functions. After a smart contract is compiled and deployed on the blockchain, all participating nodes
in the network have the compiled code replicated. When a transaction, an external input indicating a specific call to a
contract function with arguments, is submitted to the blockchain, it is executed and validated by all nodes individually.
With a large number of transactions, all nodes must process these workloads identically and in a consistent order. The
contract states updated on these nodes are exactly the same as well. The blockchain system is thus essentially equivalent
to a single state machine.

Performance of single-chain blockchain systems like Ethereum is extremely restricted as all transactions of all smart
contracts are processed by a single instance of the execution engine, e.g. Ethereum Virtual Machine (EVM). Laterally,
blockchain is scaled out by multi-chain blockchain systems [52, 56], which run one independent execution engine on
each chain and process all transactions of a smart contract in one designated instance of the execution engine. Multi-chain
systems work well when there are many smart contracts but each has a few transactions. However, from the perspective of
a single smart contract, it gains no scalability in these multi-chain systems since only one instance of the execution engine
can be leveraged. We observed transaction traffic of different smart contracts varies greatly, and on Ethereum, top-10
smart contracts by number of transactions contributed 26.98% of the total transaction volume in Q1 2022 [10]. These top
smart contracts should be scaled out, but are not yet supported by existing methods.

Author’s address: PREDA Dev Team, https://www.preda-lang.org/.
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2 PREDA Dev Team

1.1 Smart Contract Scalability

Smart contract scalability is defined as the continuous improvement of transaction throughput and state capacity for a
single smart contract when increasing the number of independent execution engines. To achieve this goal, we propose the
PREDA programming model, which describes a smart contract in a way that can be distributed, parallelized, and scaled
out by the underlying system using multiple execution engines.

With the PREDA model, transactions of a contract are divided and distributed for processing in different instances of
execution engines without duplication. The states of the contract are partitioned and distributed without overlapping. In
the ideal case, this approach allows for a linear scaling of overall transaction throughput and state capacity as the number
of execution engines increases.

The key challenge in PREDA model is efficiently handling the dependency of the execution logic (code) and the
contract state (data) while allowing execution engines to work independently and avoiding synchronization. The complete
execution logic of a transaction may access multiple parts of the contract states, which may reside in different execution
engine after state partitioning.

1.2 Distributed by Relay-Execution

When the execution of a smart contract function reaches a point that requires access to contract state residing on another
execution engine, the execution flow is stalled until the required data is available. It is straightforward to move the required
data from another execution engine so that the execution can be continued [31, 38], however it may introduce significant
overhead of data transfer and complicated distributed locking for safe data modification. Furthermore, as for blockchain
system, moving data from untrusted remote peers requires security proof to prevent data inconsistency and tampering,
which is costly and inefficient as the required data is mutable and can vary in granularity.

We propose to move the execution flow of a transaction around while keeping partitioned contract data residing in
their designated instance of execution engine at all times. Figure 1 illustrates the execution of a transaction function that
requiring contract data resided in two different parts of the contract state. In the single execution engine system like
EVM, as shown in Figure 1(a), the execution can be completed in one go but cannot be scaled. In a system with multiple
independent execution engines, as shown in Figure 1(b), the execution of a smart contract function continue as long as
the required data is available in the first execution engine (x). When an external data dependency is encountered (data is
unavailable), a relay message will be emitted to initiate the subsequent execution in the second execution engine (y) at a
later time.

{

}

{

}

{

}

Execution 
Engine

Execution 
Engine #x

Execution 
Engine #y

(a) EVM Model (b) PREDA Model

External Data 

Dependency

AsynchronousRelay

Fig. 1. Relay-Execution to facilitate the distributed execution of a transaction when depended contract data resided in different
execution engines.
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PREDA: A Programming Model to Scale out Smart Contracts 3

This Relay-Execution approach requires no moving or locking of contract states. Every partition of contract states is
updated exclusively by its designated execution engines. The relay message carries the location of the interrupted point
of the transaction function and a serialized package of local context, such as temporary variables, which is typically
much smaller and more flexible for optimization. Verifying the integrity a relay against tempering is a typical built-in
capability in most sharding blockchain and parachain systems. The Relay-Execution approach assumes that the code for
all smart contracts is deployed in all execution engines, and a smart contract function can be executed in any instance of
the execution engine at any time while working with different partition of contract state though. Since smart contract code
is a small and constant dataset, fully replicating the code in all engines is a straightforward task.

1.3 Contribution

In this paper, we propose Parallel Relay-Execution Distributed Architecture (PREDA), a novel programming model
for scaling out smart contracts on sharding blockchains, parachain systems and layer-2 blockchains. PREDA model
introduces

• Programmable Contract Scopes to define the partitioning of contract state based on the data access pattern of
the application, which narrows the range of data access and minimize the data dependency.

• Asynchronous Functional Relay to describe the transaction logic with implicit data dependency exposed so that
the execution can be easily moved across multiple execution engines.

The proposed programming model leverages existing consensus algorithm and transaction replication mechanism. No
elements are introduced that compromise the security and decentralization of the blockchain system.

We have implemented the PREDA model as an extended Solidity language, incorporating additional syntax for
programmable contract scopes and statements for asynchronous functional relay. We have developed a multi-thread
parallel transaction processor on a single machine and a simplified sharding blockchain system distributed over the
Internet, for the evaluation of the PREDA model.

We utilize the extended Solidity language to rewrite four smart contracts originally developed on Ethereum: Payment,
Voting, AirDrop, CryptoKitties, and Million-Pixel. Subsequently, we conduct a series of experiments to compare them
with their original counterparts on Ethereum. We primarily assess the performance of smart contract executions on a
single machine, excluding the overhead associated with running the consensus protocol and network propagation. In a
global testbed comprising 128 cloud virtual machines, we compare end-to-end performance. The results demonstrate that
our work achieve promising scalability with an 256 shard configuration.

2 BACKGROUND

In this section, we provide the necessary background of this work, including the details of execution engines on blockchain
systems and smart contract executions on Ethereum.

2.1 Multi-chain Systems

Multi-chain blockchain systems maintain multiple instances of chain of blocks in the network. Each instance has its
own execution engine and an independent process of chain-forming and transaction replication. Multi-chain blockchain
systems can be categorized based on various metrics. Figure 2 shows two typical structures of a multi-chain system:
the sharding blockchain, and the parachain system, based on the implementation methods of cross-chain invocation.
When there is a cross-chain invocation, parachain systems [13, 56], as shown in Figure 2(b), use a dedicated relay chain
to forward the relay from one parachain to another parachain; while sharding systems, as shown in Figure 2(a), allow
any participating node in a shard [52, 53, 55, 58] or the end-user initiating the original transaction [9, 28] to send the
relay directly through the underlying P2P network. Additionally, multi-chain blockchain systems can be further divided
based on how smart contracts are deployed and executed on shards or parachains. Some systems [9, 13, 28, 55] allow a
smart contract to be deployed and executed on all shards or parachains, while others [52, 56, 58] confine a smart contract
to a specific shard or parachain. In the former scenario, cross-chain invocations can occur within or across contracts;
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4 PREDA Dev Team

whereas in the latter, cross-chain invocations are limited to across contracts only. One of the primary objectives of the
PREDA model is to establish a general-purpose and scalable framework for multi-chain blockchain systems, irrespective
of low-level implementation details such as relay mechanisms, deployment strategies and execution methods.

Consensus algorithms for multi-chain systems share a common capability in addition to those for single-chain systems
like Ethereum. For example, to make a cross-contract invocation between two contracts deployed in different chains,
a relay transaction will be composed in the caller’s chain, then be forwarded and inserted into the callee’s chain. A
multi-chain consensus algorithm provides an efficient way to verify the authenticity of an inbound relay transaction
without accessing information from the caller’s chain, which are illustrated by red arrowed lines in figure 2. The proposed
PREDA model reuses this capability to make asynchronous functional relay, which securely moves the execution flow a
transaction to a target execution engine where the required contract state resides.

Disregarding the consensus details, an execution engine on a blockchain system can be abstracted as a sequential
state machine as illustrated in figure 3. With a sequential manner, it takes transactions from an ordered queue, executes
contract function as each transaction indicates and updates the involved parts of contract state accordingly. The ordered
transactions are organized batch-wise as blocks which are composed by the block creator in consensus layer. Any external
input is received as a transaction, unordered, which can be user-signed normal transactions or verified relay transactions
from other execution engines. These external transactions are transferred over a broadcast network and cached until being
inserted into the ordered queue for execution, a.k.a. memory pool. When executing a transaction on a multi-chain system,
outgoing relay transactions might be emitted and then passed from the initiating chain to a destination chain, where relay
transactions are pooled, confirmed and finally executed.

2.2 Smart Contracts

Smart contracts broaden the application of blockchain, supporting from pure payment applications to arbitrary customized
applications. Figure 4(a) shows an example of a simplified ERC20 contract written in Solidity. The code snippet contains a
contract state, i.e., balances representing the balances of the corresponding addresses, and a contract function transfer,
which is to transfer a number of amount tokens from the transaction sender msg.sender to a payee. In Ethereum, once a
contract is successfully deployed, each node has the compiled contract and stores the bytecode for future execution in its
local Ethereum Virtual Machine (EVM) [50]. The states and blocks are stored in a key-value store, e.g. LevelDB. When a
user submits a transaction to invoke the function transfer with corresponding parameters payee and amount, miners
first validate the transaction, e.g., if it has a valid signature, and then execute the function in the EVMs. In this case, the
opcodes, e.g., SLOAD, SUB, ADD, and SSTORE, are used. The state of the sender, i.e., balances[msg.sender], is updated
by withdrawing a number of amount tokens with the opcode SUB, and the state of the receiver, i.e., balances[payee],
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…
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(a) Sharding Blockchain
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(b) Parachain System

Fig. 2. Multi-chains systems have multiple blockchains working cooperatively in parallel, on each an instance of execution engine is
running.
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… 
Ordered Transactions in Blocks

Contract 
States

Contract
Functions

Txn

Unordered Transactions in 
the Broadcast Network

Txn

External
Input

Relay
Txn

Fig. 3. A unified abstraction of an execution engine on blockchain systems.

  contract MyToken is IERC20 {
    mapping(address => uint256) balances;
    function transfer(address payee, uint256 amount)
      external returns (bool)
    {
      require(amount <= balances[msg.sender]);
      balances[msg.sender] = balances[msg.sender] - amount;

      balances[payee] = balances[payee] + amount;

      return true;
    }
  }

  contract MyToken is IERC20 {
    uint256 @address balance;
    function transfer(address payee, uint256 amount)
      @address external returns (bool)
    {
      require(amount <= balance);
      balance -= amount;
      relay @payee (amount){
          balance += amount;
      }
      return true;
    }
  }

(1) A Programmable Contract 
Scope, indexed by address

(2) A function defined in that 
Programmable Contract Scope

(3) An Asynchronous Functional Relay with a lambda 
function describing the subsequent execution logic

(a) Code in Solidity (b) Code in the Extended Solidity with PREDA Model

Fig. 4. A glace of a smart contract with the proposed PREDA model.

is updated by depositing a number of amount tokens with the opcode ADD. Smart contracts in Ethereum are executed
instruction by instruction and transaction by transaction. After the execution, a miner selected by the consensus protocol
inserts the executed transactions into a block and sends it to the network. After receiving a block, a full node executes its
transactions and updates its local states accordingly.

Existing studies, e.g., [12, 16, 20, 24, 41, 42], allow multi-threaded execution of smart contract transactions. However,
these methods are not scalable since each node needs to execute all transactions and store all states. On multi-chain
blockchain systems, payment transactions can be executed by multiple shards or parachains in parallel. However, for
smart contract transactions that invoke arbitrary user-defined functions, existing systems either use a dedicated chain to
execute smart contract transactions [51, 53] or do not support smart contract transactions so far[28, 55, 59].

3 PREDA PROGRAMMING MODEL

In Solidity on Ethereum, a smart contract is defined as a set of variables (contract state) and functions (transaction
functions) that update variables. As illustrated in figure 4(a), both state variables and functions are defined in the global
scope of the smart contract. However, this global scope presents two significant challenges that hinder the effective and
efficient scaling of smart contracts.

First and formost, efficiently partitioning the contract states requires an understanding of the data access patterns
associated with state variables. While static code analysis can help identify the boundaries of the contract state with
precision, an optimal design necessitates a deeper understanding of the application’s nature being developed, enabling the
partitioning of state variables based on how they are utilized. We introduce Programmable Contract Scope (κ-scope),
a solution that enhances expressiveness in describing contract state partitioning and provides the flexibility needed to
enhance scalability and optimization.

Secondly, a function defined in the global scope necessitates the availability of the entire contract state for execution,
as its data dependencies can span across arbitrary portions of the contract state. This requirement is impractical in the
context of building a scalable system. To address this challenge, we propose a solution wherein the scope within which
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6 PREDA Dev Team

a function operates is narrowed down, ensuring that its data dependencies are predetermined irrespective of the actual
values of invocation arguments. Asynchronous Functional Relay (λ -relay) is introduced to decompose the execution of
a transaction to multiple invocations of these scope-narrowed functions in the order of data dependency, asynchronously
across multiple independent execution engines.

3.1 Semantics

A programmable contract scope φ is defined as a collection of variables {S } and functions {F} that are restricted to
access only variables within the same scope. In a smart contract, there can be a great number of programmable contract
scopes. These are indexed by a key k with a built-in type like string or integer. A set of keyed κ-scopes Φ can be formulated
as

Φ : φk ⇒ ⟨S ,F ⟩ , k ∈ K (1)

, in which K denotes the set of all possible values of k.
A function fφk ∈ F of a κ-scope φk has immediate access to all variables S and functions F only within that κ-scope

besides its invocation arguments and the execution context (e.g. block height, message sender and etc). Unlike functions
in Solidity, a function in the PREDA model is invoked by providing the current κ-scope (target κ-scope) to start, an
analogy to this pointer in C++. To continue the execution flow dealing with state in another κ-scope φk′ , an asynchronous
invocation of a function gφk′ will be initiated, which is formulated as a λ -relay :〈

φk′ , gφk′ , R
〉

(2)

, in which φk′ is the target κ-scope and R is the vector of the invocation arguments that provided by the caller fφk .
Figure 4(b) shows the PREDA version of the simplified ERC20 contract that can be scaled out. In part (1), a set of

κ-scopes keyed by address type is defined to represent users’ balance, which is equivalent to the map definition in
Solidity in the same line of Figure 4(a) but describes a set of fine-grained separable states for partitioning. All κ-scopes in
this example has the same definition of variables but each has a unique instance. Accordingly, the transfer function is
defined in the same set of κ-scopes in part (2), which is invoked by providing k with the payer’s address as the target
κ-scope. In part (3), to proceed with the deposit to the payee k′ after a successful withdraw, a λ -relay is initiated with φk′

as the target κ-scope, which adds funds to payee’s balance and is executed by an engine that hosts the state of φk′ .
In a smart contract, there can be multiple κ-scopes having variables and functions defined. Multiple functions and

variables of arbitrary types including containers can be defined in a κ-scope. Multiple λ -relays can be initiated in a single
function call, conditionally or unconditionally. λ -relay initiation can be recursive which allows a transaction execution
flow being moved multi-hops across different instances of the execution engine. Examples dealing with more complicated
logic of transactions are discussed in section 6.

Special κ-Scopes

Engine Scopes: One instance of κ-scope φθ i is built-in for each instance of execution engine to represent a scope that is
available for immediate read/write by any function executing in the current execution engine.
Global Scope: A built-in κ-scope φΩ that is logically singleton in the entire network. Its states are updated consistently
across all execution engines in a multi-chain system, which provides a scope that is available for immediate read access
by any function in the network.

Besides the special rules of the data availability described above, both φθ i and φΩ have the same way for defining
variables and functions, the same restriction for cross-scope data access and the same requirement of initiating λ -relays.

3.2 Partitioning

To decouple the smart contract implementation with the underlying multi-chain architecture, the PREDA model strictly
prohibits referring a specific instance of the execution engine or making assumption of the underlying distributing
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PREDA: A Programming Model to Scale out Smart Contracts 7

configuration of multiple execution engines (e.g. total # of engines). This also frees the developer from dealing with
details of the underlying distributed systems.

In the PREDA model, programmable contract scopes described in a smart contract expose fine-grained boundaries
of contract states that can be partitioned, and leave the actual partitioning strategy to the host of execution engines on
following considerations:

• A partition scheme should evenly partition the entire value space of k without overlapping, which uniquely maps
a k to an instance of the execution engine in the network.

• Partition mapping should be resolved only based on the k of a κ-scope φk and identifies a single instance of the
execution engine without ambiguity.

• Contract states in storage are indexed by k, and are written according to the current κ-scope φk.
• On initiating a λ -relay, the host should convert the relay whose target κ-scope is hosted by the current execution

engine into a local invocation instead of composing and emitting a relay transaction.

For example on a sharding blockchain with 2n shards, the partition mapping can simply be the first n-bits of the crc32k.
Each execution engine owns a unique instance of states in the engine scope φθ i for i-th execution engine, and maintains a
copy of states in the global scope φΩ , which is consistent across all instances of the execution engines. An engine scope
φθ i is not allowed to be the target of a λ -relay nor being referred by specifying θ i. Variables and functions only in the φθ i
can be accessed by the i-th execution engine, which is referred implicitly as part of the current execution context.

3.3 Relaying

A function executing in a κ-scope φk is required to initiate a λ -relay to proceed execution that deals with state variables
in another κ-scope φk′ . Figure 5 illustrates the workflow of the λ -relay in the example shown in Figure 4, a successful
execution of transfer transaction will emit a λ -relay, which will be converted to a relay transaction by the host of the
execution engine. The relay transaction will be passed to the memory pool as an unordered pending transaction in the
destination execution engine, and later confirmed and executed there. The actual mechanism of passing a λ -relay to the
destination execution engine is not defined in the PREDA model, but handled by the host of the execution engines and the
underlying multi-chain system. It is required that the host and the multi-chain system have the following capabilities:

• A λ -relay can be converted to a relay transaction with target κ-scope, identifier of the function to be invoked, and
arguments if any.

• A block should carry a proof (e.g. Merkle root) of the complete set of all emitted λ -relays so that the integrity of
all outgoing relay transactions can be verified by other nodes.

• A relay transaction should carry a proof (e.g. a Merkle path) for verifying that it is emitted by a transaction
confirmed in a specific block from the initiative execution engine.

• A relay transaction can be transferred to the memory pool of the destination execution engine as an unordered
pending transaction, and awaits being confirmed and executed.

A λ -relay to the global scope φΩ logically undergoes the same workflow as normal λ -relays. Since a global relay
transaction is broadcast, duplicated and transferred to all execution engines, the states in the global scope will be consistent
across all execution engines. At any block height, blocks in different execution engines have an ordered set of global relay
transactions that is consistent across all engines. The global relay transactions will be executed before any transaction
specific to a particular execution engine in that block. As discussed in section 3.1, a λ -relay to an engine scope is not
allowed.

Cross-Contract Invocations can be carried out immediately without requiring a λ -relay in the PREDA model, as
long as the invocation is within the same κ-scope. A cross-contract invocation across different κ-scopes is required
to initiate a λ -relay targeting the callee’s κ-scope. Thus, taking cross-contract invocations into account, the λ -relay
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8 PREDA Dev Team

definition in Equation 2 is extended to 〈
c′,φk′ , gφk′ , R

〉
. (3)

c′ denotes the smart contract whose function is invoked.

3.4 Parallelism

Transactions dealing with different κ-scopes are executed inherently in parallel since those are separately processed by
parallel instances of independent execution engines. The PREDA model ensures that execution of any transaction has
access restricted to contract state within the current engine, which allows execution engines to be driven by different
threads on a multi-core computer without worrying about the thread safeness of data access, and to be deployed on
different computers without resource sharing.

The relay-execution approach described in section 3.3 actually decomposes a complete transaction into multiple
Micro-Transactions, or µ-Txns, each reads or writes a limited set of κ-scopes that has guaranteed availability in a
single execution engine. µ-Txns scattered in different execution engines are executed in parallel while ones in the same
execution engine are processed sequentially, which avoids race conditions and needs of concurrency protection of data
access. In the example shown in Figure 4, the transaction is decomposed to a withdraw step and a deposit step. As long
as their target κ-scopes are mapped to different execution engines, the two µ-txns are processed in parallel, along with
more µ-txns of the transfer transactions. Parallelization at a granularity of µ-txn provides much better scalability and
load balancing than those at smart contract level as other multi-chain blockchain systems did [52, 56, 58].

4 CRYSTALITY: THE EXTENDED SOLIDITY

To realize the proposed programming model, we developed the Crystality language by extending the widely adopted
smart contract language, Solidity, which is originally developed for Ethereum and EVM. A few syntaxes are introduced
to the existing Solidity language for declaring variables and functions in κ-scopes and making λ -relay invocations. A

 Destination Execution Engine 

 Initiative Execution Engine

Contract
Functions

… 
Blocks Contract

Functions

Txn

Unordered 
TransactionsTxn

transfer
<target, payee, amount>

Relay
Txn

transfer
<target, payee, amount>

… 
Blocks

Txn

Unordered 
Transactions

𝝺transfer
<target, amount>

𝝺transfer
<target, amount>

Fig. 5. Workflow of the λ -relay for transfer in the MyToken contract (figure 4).
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transpiler is developed to convert the Crystality code to conventional Solidity code, by mapping new syntaxes to special
raw invocations for new behaviors and checking scope compatibilities for error detection.

4.1 Variables in κ-Scopes

In Crystality, a state variable is defined and instantiated in a κ-scope, or for each key of keyed κ-scopes as:

var_type @scope var_name;

where @scope specifies a κ-scope which can be the global scope @global, the engine scope @engine, or when scope is
a name of Solidity elementary typename to specify keyed κ-scopes like @address or @uint. @global can be omitted
which is the default κ-scope specifier.

A variable definition with @global or @engine will be converted simply as

var_type var_name;

in Solidity and the scope specifier will be recorded in the symbol table in the transpiler runtime. Any reference to the
variable will be converted to Solidity as is.

A variable definition with keyed κ-scopes will be converted to a mapping in Solidity:

mapping(scope => var_type) var_name;

with the scope specifier recorded in the symbol table for scope compatibility check when the variable is referred. A
reference to the variable in a function will be converted to Solidity as a map access:

var_name[_target]

, in which _target is a built-in const value k representing the target scope φk.

4.2 Functions in κ-Scopes

A function is always declared in a κ-scope as

function func_name(arg_type arg , ...)

@scope qualifiers returns (ret_type){ ... }

Similar to variable definition, @scope can be @global, @engine or a Solidity elementary typename. Again, @global
is the default κ-scope specifier, which can be omitted. In cases of @global or @engine, the declaration will be simply
converted to Solidity by removing @scope as

function func_name(arg_type arg , ...)

qualifiers returns (ret_type){ ... }

with its scope specifier record in the symbol table.
When the @scope is a keyed κ-scope, the key k of the target scope φk is inserted as the first argument of the function

like
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function func_name(scope _target , arg_type arg , ...)

qualifiers returns (ret_type){ ... }

The built-in constant _target is introduced as an argument to allow accessing variables defined in the current keyed
κ-scope as described in section 4.1.

Code in a function body has immediate access restricted to variables and functions in the target κ-scope by referring
corresponding symbols. While special κ-scopes such as @global and @engine have exceptions of the isolation rules for
accessing variables and functions as mentioned in section 3.1, symbols of variables and functions defined in the special
κ-scopes are merged with ones in the target κ-scope without scope qualifications. To this end, we require symbols defined
in any κ-scope have unique names within a smart contract.

In the target κ-scope φk or in the current engine κ-scope φθ i, variables and constant functions defined in global scope
are merged for read-only access. Symbols defined in the current engine κ-scope φθ i are merged into the target κ-scope φk
and allow full access of both reading and writing.

4.3 Relay to a Target κ-Scope

To continue execution logic involving contract states in a different κ-scope other than the target κ-scope without desired
immediate access, a λ -relay invocation should be made as

relay @key (var1 , var2 , ...){ ... }

relay @global (var1 , var2 , ...){ ... }

, which defines a lambda function and emits a λ -relay with it. relay is a new keyword for making a λ -relay invocation
and is followed by the target specifier which can only be the @global, a specific key of keyed κ-scopes or an expression
resulting a key.

The relay invocation will be converted to Solidity code as an EVM message call on a magic contract address that
can be recognized as a λ -relay invocation by the EVM host. So that such a λ -relay invocation can be captured and
reinterpreted as a cross-scope relay transaction if necessary. The transpiler-converted Solidity code is shown as follows,
which are equivalent to the Crystality code above:

address(_magic_address_kappa).call(

abi.encodeWithSignature(

"unique_funcname_k(scope,var_type1,var_type2,...)",

key , var1 , var2 , ...

)

);

address(_magic_address_global).call(

abi.encodeWithSignature(

"unique_funcname_g(var_type1, var_type2, ...)",

var1 , var2 , ...

)

);

_magic_address_kappa is a constant built-in address representing a λ -relay on a normal κ-scope φk, and _magic_address_global
is for indicating the global scope φΩ . Such an invocation will be captured by the EVM host and converted to an outgoing
relay transaction. When the relay transaction is received and confirmed, a private function in the target κ-scope will be
invoked, which is transpiler-generated by taking the body of the the lambda function from the λ -relay invocation.
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function unique_funcname_k

(scope _target , var_type1 var1 , var_type2 var2 , ...)

@scope private { ... }

function unique_funcname_g

(var_type1 var1 , var_type2 var2 , ...)

@global private { ... }

unique_funcname_* are unique function names within a smart contract generated by the transpiler.
The transpiler-generated functions converted from a λ -relay is guaranteed to be invoked only from the function where

it is defined. It can be a named function to be invoked in a λ -relay without a function body as

relay @key named_function_k(var1 , var2 , ...);

relay named_function_g(var1 , var2 , ...);

In these cases, functions being invoked should be defined as

function named_function_k(arg_type arg , ...)

@scope public { ... }

function named_function_g(arg_type arg , ...)

@global public { ... }

A λ -relay to a named function can also be cross-contract with the function name scoped by the name ExtContr of the
contract like

interface ExtContr {

function named_function_k(arg_type arg , ...)

@scope public;

function named_function_g(arg_type arg , ...)

@global public;

}

relay @key ExtContr(c_addr).named_function_k(var , ...);

relay ExtContr(c_addr).named_function_g(var , ...);

, in which c_addr is the address of the smart contract ExtContr actual deployed.

4.4 Transpilation for EVM

We employ a two-stage process to compile a Crystality smart contract to EVM bytecodes. First, a transpiler is developed
to convert Crystality code to conventional Solidity code. We uses ANTLR [1] to generate the parser code based on
the Solidity syntax definitions with Crystality extensions. The resulting abstract syntax tree (AST) is walked through
to generate the Solidity code with necessary conversion and auxiliary code generation described above. Second, the
generated Solidity code is compiled using the widely used SOLC [5] compiler to generate bytecodes that can be executed
on an unmodified EVM. As an example, the simplified ERC20 smart contract in figure 4 will be transpiled as

contract MyToken is IERC20 {

mapping(address => uint256) balance;

function transfer



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 PREDA Dev Team

(address _target , address payee , uint256 amount)

external returns (bool)

{

require(amount <= balance[_target ]);

balance[_target] -= amount;

address(_magic_address_kappa).call(

abi.encodeWithSignature(

"_lambda_transfer_0(address, uint256)",

payee , amount

)

);

return true

}

function _lambda_0_transfer

(address _target , uint256 amount)

{

balance[_target] += amount;

}

}

We use EVMOne[22] as the EVM implementation in our system to execute bytecode generated by SOLC. EVMC[3]
is the standard to communicate with EVMOne. We implemented its HostContext interface to provide the EVMOne with
capabilities of accessing state storage, handling message call and exposing metadata of current block and transaction.
In addition to those, all λ -relay invocations are captured by overriding the HostContext::call function of the EVMC
interface using the magic address _magic_address_kappa for keyed κ-scopes φk and _magic_address_global for the
global scope φΩ . The target scope, function and arguments, as encoded by abi.encodeWithSignature, are passed to the
underlying multi-chain system for composing the relay transaction and forwarding to the execution engine that hosts the
target κ-scope .

4.5 Writing Scalable Smart Contracts

Crystality enables that a smart contract can be written in a scalable way based on PREDA programming model. While it
relies on developers to separate the contract states in different κ-scopes using programable contract scope syntax based
on the nature of the business logic, and decompose the transaction workflow using asynchronous functional relay syntax
accordingly. The design goal is to minimizes amount of the contract states hosted in global scope φΩ and minimizes the
transaction traffic processed in the global scope. Crystality provides flexibilities for developers to tweak and optimize
smart contracts so that the understanding of the actual patterns of workload in the runtime can be leveraged.

Note that, any Solidity code can be compiled in the proposed Crystality system as is, which is actual put everything
in the global scope. Such a smart contract will not be scalable at all and is equivalent to running a smart contract on a
single-chain blockchain system.

Automatically analyzing a Solidity smart contract, decomposing data dependencies and separating contract states
based on static code analysis or profiling with exemplar transaction traffic is an interesting research topic. We leave this to
future works, while we provide the target for such automatic conversion as a starting point.

5 SYSTEM DESIGN AND IMPLEMENTATIONS

To evaluate the Crystality language with the proposed PREDA programming model, we developed a smart contract
execution module as described in Section 4.4. Two testbeds are developed for testing the smart contract execution module:
one for running on a multi-core single machine and the other for a distributed scenario on open Internet.
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The PREDA smart contract execution module uses Solc[5] 0.8.18 and EVMOne[22] 0.8.0 for Solidity compilation and
bytecode execution. Different implementations of EVM host interfaces are developed for adapting the two testbeds.

5.1 On a Multi-Core Single Node

We evaluate the pure execution performance of our method on a multi-core single node. We call this testbed as Multi-
threading Transaction Processor, which minimizes overheads that are unrelated to smart contract execution such as block
composition, data communication, signature verification, and consensus algorithm.

Using n cores on the test computer, n 1 execution units are allocated. Each has an independent instance of the EVM
engine, a lock-free queue [18] for pending transactions and a working thread that drives the processing. One of the
execution unit UΩ is dedicated for transaction processing and state updating in the global scope φΩ , and the rest n
execution units Uθ i work for all n partitions of keyed κ-scopes.

In each execution unit, transaction processing is performed batch-wise. Each batch will process transactions as much
as possible until exceeding a predefined total gas limit or the pending transaction queue being drained. The processing is
an infinite loop which undergoes the following steps:

• Finish the batch in UΩ for the global scope, while all the rest of units Uθ i await.
• Process the batch in all units Uθ i in parallel, while the unit UΩ awaits. Since contract state in global scope are

read-only to all Uθ i, there would be no race condition.
• All units Uθ i are finished when the total gas exceeds the limit.

Note that the total gas is the sum of the gas consumptions across all Uθ i units to ensure that utilization of CPUs are
balanced and all units finished nearly at the same time. When processing in a batch, all relay transactions emitted are
collected and dispatched to the pending queue of the corresponding unit on the end of the current batch. Pending relay
transactions are processed prior to pending normal transactions.

5.2 On a Sharding Blockchain System

We also evaluate the end-to-end scalability of the proposed model on a sharding blockchain system deployed on open
Internet. We developed a simplified homogenous sharding blockchain system similar to NEAR[52], which creates n
blocks for n shards at each block height synchronously as shown in figure 10. In addition, a global chain is introduced to
process transactions and update states in global scope φΩ only. Global chain provides a globally synchronized consistent
view of global scope at every block height. Designing a sharding blockchain is out of the scope of this paper, we leave
details in appendix A.

6 EVALUATION

6.1 Crystality Smart Contracts

Besides the ERC20 contract, as shown in Figure 4, we rewrite four other widely used smart contracts in Crystality and use
them to evaluate the performance of the PREDA model. They are Voting, AirDrop, CryptoKitties, and MillionPixel.
The corresponding code can be found in Appendix B. In the following experiments, we use the same software setups to
run these smart contracts. For MyToken, we use the Etherscan API [4] to obtain historical WETH [8] Token transactions
in Ethereum, from block height 4,719,568 (i.e., the creation time of WETH) to block height 18,184,075 (i.e., at 08:00
am, EST, September 21, 2023). The dataset includes more than 197.2 million transactions from 877,664 addresses. We
re-execute the first 1,000,000 transfer transactions in our experiments. For the other smart contracts, we randomly generate
1,000,000 Ethereum addresses.All these addresses are used in Voting and MillionPixel contracts and 10% of them are
used in AirDrop and CryptoKitties contracts to issue transactions, with one transaction issued per address. Details on
the numbers of different types of transactions will be discussed later.
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Table 1. Numbers of different types of Crystality Txns in 16 shards

MyToken Voting AirDrop CryptoKitties Million-Pixel

origin_txns 1,000,000 1,000,001 100,000 100,001 1,000,000

total_relays 1,000,000 33 500,000 400,033 1,000,000

intra_relays 64,839 0 32,720 18,698 62,687

cross_relays 935,161 33 467,280 381,335 937,313

global_txns 0 17 0 17 0

shard_txns 2,000,000 1,000,017 600,000 500,017 2,000,000

total_txns 2,000,000 1,000,034 600,000 500,034 2,000,000

6.2 On Multiple Single Nodes

We first evaluate the Crystality smart contracts on two different multi-core nodes, respectively. The first node is a powerful
server that has an AMD EPYC 7742 (64-core, 3.4GHz) CPU and 2TB memory, running on Linux Ubuntu 20.04. The
second platform is a desktop machine that has an Intel i7-10700 (8-core w/hyper-threading, 2.9GHz) CPU and 32GB
memory, running on Linux Ubuntu 23.10. The number of transactions is kept the same when the number of shards
increases. Each thread has its affinity set to a dedicated CPU core.

Figure 6 shows the performance numbers in Transactions per Second (TPS) on the AMD/Linux machine for all five
Crystality smart contracts. Overall, we can achieve 30.3x to 56.1x TPS improvement when using 64 shards over 1 shard.
Performance numbers of the equivalent Solidity smart contracts are also included. Since EVM can only sequentially
execute Solidity transactions and different EVMs execute the exactly same transactions in Ethereum, the overall TPS of
running Solidity smart contracts will not improve even with increasing number of EVMs. As a result, we only draw the
TPS of running Solidity smart contracts in 1 shard with "Eth-" as the prefix. Compared to Solidity, Crystality contracts
can achieve 17x to 42.9x TPS when run on 64 shards.
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Fig. 6. Performance on 64-core AMD/Linux node

We collect the numbers of different types of Crystality Txns when using 16 shards to run the contracts and include
them in Table 1. The "origin_txns" row represents the amount of transactions initiated from end-users. The "total_relays"
row represents the amount of total relay transactions, which includes the intra-shard relays denoted as "intra_relays"
and the cross-shard relays denoted as "cross_relay". The row "global_txns" and "shard_txns" represent the amount of
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transactions executed in execution unit UΩ and other Uθ is respectively. The "total_txns" row means the total amount of
transactions including both.

As best practice, programmers should (1) eliminate the global transactions as much as possible, because these
transactions require global synchronization; and (2) try executing transactions in engine scope without emitting too many
relays, because a relay leads to the switch of execution flow from one engine to another engine. As shown in the table, all
five Crystality smart contracts issues very few or zero global transactions. For example, Voting contract executes 1 global
transaction in its finalize() function to stop the voting, 16 cross-shard relays are emitted from the global to shards to
request partial voting results, and 16 global transactions, each of which accumulates a partial voting result from a shard
when using 16 shards. As a result, Crystality Voting contract scales the best with the number of shards, which is 56.1x
TPS improvement with 64 shards.

When run on one single shard, the TPS of a Crystality contract is typically lower than its Solidity equivalent. In order to
interpret the performance numbers, we look into the details of our transpiler-generated Solidity code shown in Listing 4.4.
The major difference compared to the Solidity equivalent (as shown in Figure 4(b)) is that our transpiler-generated code
implements the relay semantic with the address.call() method, which generates a relay transaction in the EVM host,
forwards it to the execution engine hosting the target κ-scope , and reenters the EVMOne virtual machine to execute the
relay function. There are two major steps when executing a function in EVMOne. The first step analyze(), functioning
as a code reviewer and a bytecode parser, traverses the smart contract bytecodes, verifies the correctness, and restores
a function pointer according to the bytecode function table. The second step execute(), regarded as a function seeker
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Fig. 7. Execution time breakdown in EVMOne "analyze()" and "execute()" functions, and bytecode sizes in smart contract analyzed by
"analyze()" and executed by "execute()".
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Fig. 8. Performance on 8-core Intel/Linux node

and an instruction executor, takes the analyzed code from analyze() and execution state as parameters, jumps to the
corresponding function and execute the instructions.

Figure 7 quantifies the execution time of these two steps in our transpiler-generated Solidity codes (denoted as "ours")
and their Solidity equivalents (denoted as "Solidity"), and the bytecode sizes executed in the execute() step for both
methods. As shown in Figure 7(a) and (b), both the execution time of analyze() and execute() are increased in our
transpiler-generated code. The first reason behind this is that our smart contracts have larger bytecode sizes as shown in
Figure 7(c), leading to longer time of code analyzing in analyze(). The second reason is that our relay implementation
executes more instructions in execute, as shown in Figure 7(d). Therefore, a more efficient way to implement the λ -relay
semantics should be an extension of EVM opcodes to support the functional relay, which is left to future works.

We also carry out the performance comparison on the Intel/Linux machine. As shown in Figure 8, we can achieve 5.6x
to 7.45x TPS improvements when using 8 shards over 1 shard. When comparing to the results of Solidity smart contracts,
we can achieve 2x to 4.5x TPS improvements when running Crystality smart contracts on 8 shards. The experiments
illustrate that our PREDA model is scalable in the testbeds of Multi-threading Transaction Processor.

6.3 On a Sharding Blockchain on Internet

To evaluate the scalability of PREDA language on distributed sharding blockchain network in real world Internet
environment, we implement the sharding blockchain system, as described in Section A. The network is deployed up to 256
nodes on 128 virtual machines in different geo-locations over the world. Each virtual machine has 4 cores, 16GB memory
and 50Mbps bandwidth to the public internet. Each node joins one shard. The entire network is configured to ensure
that each shard has at least one participating node. In each shard, a block is created every 10 seconds in average, and
each block carries transactions with restricted total consumption of computing capacity. In our experiments, computing
capacity is measured by gas burnt as defined by EVM.

In our experiments, the computing capacity restriction, a.k.a. gas limit, of each block is 1024. For transactions involved
in our experiments, the gas consumption of each transaction and relay transaction are following:

• In MyToken (Figure 4(a)): withdraw: 1, deposit: 1.
• In Voting (Listing 1): vote function: 1.
• In AirDrop (Listing 2): airDrop: 1, deposit: 1.
• In CryptoKitties (Listing 3): breed: 1, lambda#1 function: 1, lambda#2 function: 500, lambda#3 function: 1.
• In MillionPixel (Listing 4): claim: 1, lambda#1: 1.

Note that, we set the gas consumption in the Lambda#2 of Crystality CryptoKitties "contract" very high because it uses
the genes from the matron and sire to compute the genes of the new born, involving multiple times of square root on big
numbers.
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Fig. 9. Performance on distributed sharding blockchain system

Since the blockchain network operates with a fixed computing capacity, we measure the number of total block height
elapsed to complete the execution of all pre-defined test transactions and all subsequentially emitted relay transactions.
Figure 9 shows that smart contract developed using Crystality language scales linearly with increasing numbers of shards.
Unlike simulation with multi-threading on a single node, nodes in a blockchain network share no computing resource,
which avoids scalability degradation even when all nodes are fully leveraged. In average, 256 shards can yield up to
124.2x throughput improvement. Note that, based on the workload of each testing contract, we generate different numbers
of testing transactions to trigger the execution of contracts. For contracts listed above, the numbers of test transactions are
10m, 10m, 400k, 100k, and 10m respectively, so that the experiment can be done within reasonable hours.

7 RELATEDWORK

Many studies have optimized the performance of blockchains, e.g., those that optimize transaction dissemination and
block propagation [17, 21, 23, 26, 36, 37, 39], those that accelerate consensus protocols [25, 29, 30, 34, 46, 47, 57], Layer
2 networks [40, 44, 45], etc. In this paper, we focus on sharding blockchains and parallel execution of smart contracts.

Elastico [32] is a sharding blockchain. In Elastico, a node can join a committee of a shard by solving a PoW puzzle.
The committee of each shard performs PBFT to reach consensus on a set of transactions. A final committee is responsible
for collecting the results of all shards, creating the final block, and sending it to the network. Elastico is designed for
parallel execution of payment transactions. OmniLedger [28] is a secure, scalable, and decentralized sharding system.
To ensure security, OmniLedger uses RandHound [48] as a public randomness protocol to select and assign validators
to shards and to periodically rotate the assignment between validators and shards. It introduces Atomix, a two-phase
client-driven “lock/unlock” protocol to ensure that a client either fully commits a transaction across shards or aborts
the transaction. OmniLedger is also designed for parallel execution of payment transactions. Its pessimistic locking
mechanism can lead to sequential execution of smart contract transactions when a state is shared by multiple transactions.
Since neither Elastico nor OmniLedger are designed for parallel execution of smart contracts, the open-source sharding
blockchain Zilliqa [53], which is “built upon the ideas of ByzCoin, Elastico, and OmniLedger”, uses a dedicated shard
(i.e., a directory service committee) to process all smart contract transactions.

RapidChain [59] is a BFT-based sharding protocol that is resilient to Byzantine failures of up to a 1/4 to 1/3 fraction of
the network. It does not require a trusted setup for nodes to join the network and can improve performance with a new
intra-committee consensus protocol by implementing block pipelining and optimizing the gossip algorithm for large
block propagation. Monoxide [55] is a PoW-based sharding blockchain that implements optimistic cross-shard transaction
processing. It provides a new mining method that allows a miner to create multiple blocks for different shards with a
PoW nonce, to prevent the 1% attack. OHIE [58] is a parallel chain where multiple chains execute Nakamoto consensus
instances individually. To secure each chain, miners in OHIE use a Merkle tree that binds to the last blocks of all parallel
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chains in a newly created block. A decentralized method is also implemented to determine the total order of blocks created
by parallel chains. Prism [13] improves blockchain scalability by decomposing the blockchain into multiple chains based
on functionalities. It groups blockchain nodes into different chains for block proposal, voting, final block creation, etc.
In [54], Prism is extended to support smart contract execution, providing the virtual machine execution module and
decoupling transaction validation and state update. Miners in Prism only need to verify transactions, but not execute
transactions or update states in the virtual machine. However, without sharding on-chain states, transactions accessing the
states of the same contract will still execute sequentially in Prism. Chainspace [9] and COSPLIT [38] are two independent
sharding blockchains that attempt to enable parallel execution of smart contract transactions. In Chainspace, the optimistic
transaction execution method can lead to high abort-and-rollback overhead when there are large conflicts, which is very
common between transactions invoking the same contract. In COSPLIT, on-chain states are not sharded. In addition,
COSPLIT relies on the compiler to detect parallel opportunities, and many parallel opportunities are missed, such as a
single transaction calling a function with a parallel loop (e.g., the airDrop function).

There are several studies that address parallel execution of smart contracts, but only with local parallelism, i.e., without
global workload partitioning and parallel processing between nodes. Based on the transactional boosting approach [27],
Dickerson et al. [20] instrument the data structures of smart contracts and detect synchronization conflicts. They allow
miners to execute conflict-free transactions and update states in parallel. The execution plan information is inserted into
the block by the miner. Full nodes can deterministically re-execute the received blocks. Anjana et al. [12] also use the
optimistic Software Transactional Memory (STM) method to execute smart contract transactions on miners and verify
blocks on full nodes, both in parallel. Based on historical data of Ethereum, Saraph and Herlihy [41] estimate the potential
benefit of speculative execution and use the speculative method to execute smart contract transactions in parallel. Chen et
al. [16] propose Forerunner, a constraint-based approach for speculative execution of smart contract transactions, in a
pre-execution manner. All of these approaches focus on parallelizing smart contract execution on a single node. Without
sharding, all nodes must continue to execute all transactions and store all on-chain states.

8 CONCLUSIONS

In this paper a novel programming model, PREDA, is proposed to scale out transaction processing and state hosting of
smart contracts. By partitioning contract states and dividing transaction traffic, the workload of a single smart contract
can be distributed to an array of execution engines working in parallel. Programmable Contract Scope are introduced
to define the fine-grain partition boundary of contract states so that states of a smart contract can be partitioned by the
underlying system with flexibility. Accordingly, Asynchronous Functional Relay is proposed to solving the code-data
dependency by moving execution of the transaction workflow across execution engine to where involved contract states
reside.

The proposed PREDA model is realized as a smart contract language, Crystality , by extending widely adopted Solidity
language with new syntaxes for defining states/function in programmable contract scopes and initiating invocations of
asynchronous functional relay. We demonstrate the generality and flexibility of Crystality by rewriting existing Solidity
smart contract in a scalable way. In our experiments, the Crystality version of testing smart contracts are well parallelized
and achieve promising linear scalability , which delivers 124.2x throughput improvement with 256 shards.
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[58] Haifeng Yu, Ivica Nikolić, Ruomu Hou, and Prateek Saxena. Ohie: Blockchain scaling made simple. In Proceedings of the 2020 IEEE Symposium on

Security and Privacy, SP ’20, pages 90–105. IEEE, 2020.
[59] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling blockchain via full sharding. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’18, pages 931–948, New York, NY, USA, 2018. ACM.

https://gist.github.com/arpit/071e54b95a81d13cb29681407680794f
http://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://eprint.iacr.org/2016/1159.pdf
https://docs.soliditylang.org/en/latest/
https://ethereum.org/en/developers/docs/evm/
https://harmony.one/whitepaper.pdf
https://near.org/papers/the-official-near-white-paper/
https://docs.zilliqa.com/whitepaper.pdf
https://assets.polkadot.network/Polkadot-whitepaper.pdf


1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

PREDA: A Programming Model to Scale out Smart Contracts 21

Appendix

A SHARDING BLOCKCHAINWITH GLOBAL SCOPE

A.1 Multi-Chain Structure

First, we use a typical single-chain structure including contract state storage, execution engine, mempool and the broadcast
network, to process transactions and maintain states in global scope only, as the global chain SΩ . Then, the system is
extended by allocating additional 2k shard chains Sθ i with same structure as the global chain but handles transactions
hosted by their own partition θ i only. Parameter k is the sharding order controls the overall size of the sharding system,
exponentially, which makes total number of shards to be a power of two.

In the system, block creations are synchronous. For each new block generated in global chain, one, and only one,
block per shard chain will be generated, which results in aligned block heights for all chains in the system. In any node
participated in one or more shards, the block of global chain at height h shall be received and executed after any block at
height h−1 is executed, and prior to any block at height h in any shard chain, which provides a consistent view of the
global scope φΩ at height h throughout the entire network when executing any transaction in shard chains. In each node,
the contract states in global scope is available for thread-safe read-only access by transactions executing in shard chains.

A.2 Data Structures

A shard chain doesn’t have own consensus proof, instead it inherits consensus proof from the global chain. Figure 11
illustrate key data structures that extend a single-chain blockchain system with shard chains. Existing data structures, block
header and block body, of the single-chain system are denoted here as consensus header and global block. The consensus
header carries the proof for a validated consensus proof (e.g. the PoW nonce, or the aggregation of PoS signatures) and
the hash pointing to the global blocks θg, which carries actual transactions in global scope being confirmed. The two
data will be broadcasted in the global broadcast network that all nodes in the network will receive those regardless of the
sharding division. Every node thus has the contract states of the global scope and keeps updating.

To extending the global chain with shard chains, two additional aggregated proofs (Θ and ϒ ) are introduced and
embedded in the consensus header at every block height to prove validities of all newly generated shard blocks and
emitted relay transactions at that height h.

• A Merkle tree Θ is built by taking hashes of 2k shard blocks at height h of all shard chains. The Merkle tree root
will be embedded in the consensus header so that a shard block θs can be verified in any shard chain.

…
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…
 …

…
 …

…
 …

…
 …

Shard Chain
#0

Shard Chain
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… Global Chain

            h-2                        h-1                         h                        h+1     …
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#1

Fig. 10. A sharding blockchain system with a global chain and multiple shard chains.
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Fig. 11. In our synchronous sharding, a block contains a consensus header, a global transaction block, and transaction blocks, one for
each shard. Relay transactions are verified with the merkle tree root carried by the consensus header.

• A Merkle tree ϒ is built by taking hashes of relay transactions emitted by blocks at height h of all shard chains to
facilitate functional relays. Embedding the root of the Merkle tree ϒ in every consensus header enables validation
of any inbound relay transactions received in the global chain or in any shard chains, by checking upon the
Merkle root carried by the consensus header at the emitted block height of a particular relay transaction.

B CRYSTALITY SMART CONTRACTS

Voting is a smart contract that allows voters to vote on the candidate proposals [7]. In Solidity code, the candidate
proposals are defined in a global array and voting transactions from voters are executed one by one in the EVM to read
and modify the proposals accordingly. The equivalent Crystality Voting smart contract is shown in Listing 1. We define
the variable proposals in the global scope φΩ with the keyword @global and introduce a new variable votes in the
engine scope with the keyword @engine. The basic idea is to use this engine scope variable as an intermediate layer to
obtain voting results in each engine, and aggregate all partial results to the final results defined in the global scope.

1 contract Ballot {

2 Proposal [] @global proposals;

3 uint64 [] @engine votes;

4 bool @address voted;

5

6 function vote(uint32 proposal) @address public returns (bool) {

7 if (proposal < proposals.length) {

8 votes[proposal ]++;

9 voted = true;

10 return true;

11 }

12 return false;

13 }

14

15 function finalize () @address public {

16 require(controller == msg.sender);

17 relay @engines {

18 relay @global (votes) {

19 for (uint32 i = 0; i < votes.length; i++)

20 proposals[i]. weights += uint64(votes[i]);

21 }

22 }

23 }
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24 }

Listing 1. The Voting smart contract in Crystality

When receiving a transaction from an address, the function vote() defined in the κ-scope (i.e., the address scope
using @address in this case) directly updates the engine scope variable votes. Concurrent voter transactions partitioned
by address scope will be forwarded to different engines and modify different instances of the variable votes. When the
function finalize() is called to complete the voting process, the function sends a relay to all engines and triggers all
engines to send a relay to the global with the partial voting results, i.e. votes. The global scope variable proposals will
be updated and finalized.

AirDrop is a smart contract sending tokens or NFTs from an address to a group of destination addresses [2]. In
Solidity code, the transfers occur in a for loop, and the global states of balances are updated sequentially. This could be
the performance bottleneck and exacerbated if computations in the loop involve heavier operations such as divisions of
big numbers and hash functions. Existing work using multithread execution [16, 41, 42] or sharding execution [9, 38]
cannot parallelize such a case because none of them can leverage parallel opportunities inside a single transaction.

1

2 contract AirDrop {

3 uint @address balance;

4

5 function airDrop(Payment [] memory recipients) @address public returns (bool) {

6 uint total = 0;

7

8 for (uint i = 0; i < recipients.length; i++) {

9 require(recipients[i]. amount >= 0);

10 total += recipients[i]. amount;

11 }

12

13 if (total > balance) return false;

14 balance -= total;

15

16 for (uint i = 0; i<recipients.length; i++) {

17 if(recipients[i]. amount > 0) {

18 relay @recipients[i].to (amount) {

19 balance += amount;

20 }

21 }

22 }

23 }

24 }

25

Listing 2. The AirDrop smart contract in Crystality

The equivalent Crystality AirDrop smart contract is shown in Listing 2. In the for loop of Crystality AirDrop()

function, a relay is issued for each recipient. Multiple relays will be executed in different target κ-scopes keyed by
recipient address.

CryptoKitties is a blockchain game enabling players to breed and trade virtual cats through NFTs on Ethereum
[33]. Upon its launch time in October 2017, the game accounted for a substantial 10% of Ethereum’s network traffic,
causing a surge in gas prices that temporarily disrupted Ethereum’s usability. We implement the Crystality CryptoKitties
smart contract as shown in Listing 3, focusing on the breed() function. The execution of this function will trigger a
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sequence of chained relays, from the end-user’s κ-scope to the matron kitty’s κ-scope, the sire kitty’s κ-scope, and
ultimately back to the end-user’s κ-scope.

1

2 contract KittyBreeding {

3 KittyInfo [] @global allKitties;

4 KittyInfo [] @engine newBorns;

5 mapping <uint32 => Kitty > @address myKitties;

6

7 function breed(uint32 m, uint32 s, bool gender) @address public {

8 require(m < allKitties.length);

9 require(s < allKitties.length);

10 require(allKitties[m]. gender);

11 require (! allKitties[s]. gender);

12

13 relay @allKitties[m].owner (m, s, gender) {

14 myKitties[m]. lastBreed = block.number;

15

16 relay @allKitties[s].owner (myKitties[m].genes , m, s, gender) {

17 uint new_gs = genesMix(myKitties[m].genes , myKitties[s].genes);

18

19 relay @msg.scope (m, s, gender , new_gs) {

20 uint birth_time = block.number;

21 uint id_nb = newBorns.length | (1 << 255);

22 _addNewKitty(msg.scope, new_gs , id_nb , m, s);

23 KittyInfo memory n;

24 n.gender = gender;

25 n.birthTime = birth_time;

26 n.owner = msg.scope;

27 newBorns.push(n);

28 }

29 }

30 }

31 }

32 }

33

Listing 3. The CryptoKitties smart contract in Crystality

Similar to the Crystality Voting smart contract, an engine scope variable newBorns() is defined. Using this variable,
write operations on chain are executed on different engines independently and simultaneously. Although the smart contract
accesses the global scope variable allKitties, this doesn’t become a global barrier because the contract function only
reads the global scope variable.

MillionPixel is a DeFi smart contract enabling users to buy pieces of DeFi Meta Chain’s history [6]. We implement this
smart contract in Crystality to show that how to define and use a κ-scope other than the address scope. As shown in
Listing 4, we use the uint32 κ-scope as the relay target, denote as @unit32.

1

2 contract MillionPixel {

3 Land @uint32 land;

4

5 function claim(uint16 x, uint16 y) @address public {

6 uint32 index = uint32(x) * 65536 + uint32(y);

7 relay @index (msg.sender) {

8 if (true == land.flag) return;

9 land.flag = true;
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10 land.owner = msg.sender;

11 }

12 }

13 }

14

Listing 4. The MillionPixel smart contract in Crystality


	Abstract
	1 Introduction
	1.1 Smart Contract Scalability
	1.2 Distributed by Relay-Execution
	1.3 Contribution

	2 Background
	2.1 Multi-chain Systems
	2.2 Smart Contracts

	3 PREDA Programming Model
	3.1 Semantics
	3.2 Partitioning
	3.3 Relaying
	3.4 Parallelism

	4 Crystality: the Extended Solidity
	4.1 Variables in -Scopes
	4.2 Functions in -Scopes
	4.3 Relay to a Target -Scope
	4.4 Transpilation for EVM
	4.5 Writing Scalable Smart Contracts

	5 System Design and Implementations
	5.1 On a Multi-Core Single Node
	5.2 On a Sharding Blockchain System

	6 Evaluation
	6.1 Crystality Smart Contracts
	6.2 On Multiple Single Nodes
	6.3 On a Sharding Blockchain on Internet

	7 Related Work
	8 Conclusions
	References
	A Sharding Blockchain with Global Scope
	A.1 Multi-Chain Structure
	A.2 Data Structures

	B Crystality Smart Contracts

